Defect detection in magnetic tile images based on stationary wavelet transform
A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enh...
Gespeichert in:
Veröffentlicht in: | NDT & E international : independent nondestructive testing and evaluation 2016-10, Vol.83, p.78-87 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | |
container_start_page | 78 |
container_title | NDT & E international : independent nondestructive testing and evaluation |
container_volume | 83 |
creator | Yang, Chengli Liu, Peiyong Yin, Guofu Jiang, Honghai Li, Xueqin |
description | A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enhancement were respectively used to eliminate the interference and enhance the target in subbands produced by SWT. To verify the validity of the proposed algorithm, extensive experiments were conducted in a novel machine vision based system. As the result shows, the proposed method achieves an accuracy rate of 92.86% in detecting various defects in magnetic tile surfaces with the average operation time of 0.5190s, and is superior to traditional methods in terms of the high reliability and accuracy. |
doi_str_mv | 10.1016/j.ndteint.2016.04.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835649027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869516300354</els_id><sourcerecordid>1835649027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-308dcecd3272cad04f2f61b409aef58857a3468d98de13d25915c707e5bc4e4e3</originalsourceid><addsrcrecordid>eNqFkEtLAzEcxIMoWB8fQcjRy655brInkfqEohc9hzT5r6RsszVJFb-9Ke3d0zAwMzA_hK4oaSmh3c2qjb5AiKVl1bZEtIR0R2hGteobSpU4RjPSd7zRXS9P0VnOK0IIE1zN0Os9DOAK9lCqhCniEPHafkYoweESRsChWsh4aTN4XAO52F3Qpl_8Y79hhIJLsjEPU1pfoJPBjhkuD3qOPh4f3ufPzeLt6WV-t2gcF6w0nGjvwHnOFHPWEzGwoaNLQXoLg9RaKstFp32vPVDumeypdIookEsnQAA_R9f73U2avraQi1mH7GAcbYRpmw3VXHaiJ0zVqNxHXZpyTjCYTaqX0q-hxOz4mZU58DM7foYIU_nV3u2-B_XHd4BksgsQHfiQKirjp_DPwh_1RXzt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835649027</pqid></control><display><type>article</type><title>Defect detection in magnetic tile images based on stationary wavelet transform</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Chengli ; Liu, Peiyong ; Yin, Guofu ; Jiang, Honghai ; Li, Xueqin</creator><creatorcontrib>Yang, Chengli ; Liu, Peiyong ; Yin, Guofu ; Jiang, Honghai ; Li, Xueqin</creatorcontrib><description>A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enhancement were respectively used to eliminate the interference and enhance the target in subbands produced by SWT. To verify the validity of the proposed algorithm, extensive experiments were conducted in a novel machine vision based system. As the result shows, the proposed method achieves an accuracy rate of 92.86% in detecting various defects in magnetic tile surfaces with the average operation time of 0.5190s, and is superior to traditional methods in terms of the high reliability and accuracy.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2016.04.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Defect detection ; Defects ; Filtering ; Filtration ; Image detection ; Machine vision ; Machine vision based system ; Magnetic tile ; Nondestructive testing ; Stationary wavelet transform ; Wavelet transforms</subject><ispartof>NDT & E international : independent nondestructive testing and evaluation, 2016-10, Vol.83, p.78-87</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-308dcecd3272cad04f2f61b409aef58857a3468d98de13d25915c707e5bc4e4e3</citedby><cites>FETCH-LOGICAL-c342t-308dcecd3272cad04f2f61b409aef58857a3468d98de13d25915c707e5bc4e4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ndteint.2016.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Yang, Chengli</creatorcontrib><creatorcontrib>Liu, Peiyong</creatorcontrib><creatorcontrib>Yin, Guofu</creatorcontrib><creatorcontrib>Jiang, Honghai</creatorcontrib><creatorcontrib>Li, Xueqin</creatorcontrib><title>Defect detection in magnetic tile images based on stationary wavelet transform</title><title>NDT & E international : independent nondestructive testing and evaluation</title><description>A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enhancement were respectively used to eliminate the interference and enhance the target in subbands produced by SWT. To verify the validity of the proposed algorithm, extensive experiments were conducted in a novel machine vision based system. As the result shows, the proposed method achieves an accuracy rate of 92.86% in detecting various defects in magnetic tile surfaces with the average operation time of 0.5190s, and is superior to traditional methods in terms of the high reliability and accuracy.</description><subject>Algorithms</subject><subject>Defect detection</subject><subject>Defects</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Image detection</subject><subject>Machine vision</subject><subject>Machine vision based system</subject><subject>Magnetic tile</subject><subject>Nondestructive testing</subject><subject>Stationary wavelet transform</subject><subject>Wavelet transforms</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEcxIMoWB8fQcjRy655brInkfqEohc9hzT5r6RsszVJFb-9Ke3d0zAwMzA_hK4oaSmh3c2qjb5AiKVl1bZEtIR0R2hGteobSpU4RjPSd7zRXS9P0VnOK0IIE1zN0Os9DOAK9lCqhCniEPHafkYoweESRsChWsh4aTN4XAO52F3Qpl_8Y79hhIJLsjEPU1pfoJPBjhkuD3qOPh4f3ufPzeLt6WV-t2gcF6w0nGjvwHnOFHPWEzGwoaNLQXoLg9RaKstFp32vPVDumeypdIookEsnQAA_R9f73U2avraQi1mH7GAcbYRpmw3VXHaiJ0zVqNxHXZpyTjCYTaqX0q-hxOz4mZU58DM7foYIU_nV3u2-B_XHd4BksgsQHfiQKirjp_DPwh_1RXzt</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Yang, Chengli</creator><creator>Liu, Peiyong</creator><creator>Yin, Guofu</creator><creator>Jiang, Honghai</creator><creator>Li, Xueqin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201610</creationdate><title>Defect detection in magnetic tile images based on stationary wavelet transform</title><author>Yang, Chengli ; Liu, Peiyong ; Yin, Guofu ; Jiang, Honghai ; Li, Xueqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-308dcecd3272cad04f2f61b409aef58857a3468d98de13d25915c707e5bc4e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Defect detection</topic><topic>Defects</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Image detection</topic><topic>Machine vision</topic><topic>Machine vision based system</topic><topic>Magnetic tile</topic><topic>Nondestructive testing</topic><topic>Stationary wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chengli</creatorcontrib><creatorcontrib>Liu, Peiyong</creatorcontrib><creatorcontrib>Yin, Guofu</creatorcontrib><creatorcontrib>Jiang, Honghai</creatorcontrib><creatorcontrib>Li, Xueqin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chengli</au><au>Liu, Peiyong</au><au>Yin, Guofu</au><au>Jiang, Honghai</au><au>Li, Xueqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect detection in magnetic tile images based on stationary wavelet transform</atitle><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle><date>2016-10</date><risdate>2016</risdate><volume>83</volume><spage>78</spage><epage>87</epage><pages>78-87</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enhancement were respectively used to eliminate the interference and enhance the target in subbands produced by SWT. To verify the validity of the proposed algorithm, extensive experiments were conducted in a novel machine vision based system. As the result shows, the proposed method achieves an accuracy rate of 92.86% in detecting various defects in magnetic tile surfaces with the average operation time of 0.5190s, and is superior to traditional methods in terms of the high reliability and accuracy.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2016.04.006</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-8695 |
ispartof | NDT & E international : independent nondestructive testing and evaluation, 2016-10, Vol.83, p.78-87 |
issn | 0963-8695 1879-1174 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835649027 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Defect detection Defects Filtering Filtration Image detection Machine vision Machine vision based system Magnetic tile Nondestructive testing Stationary wavelet transform Wavelet transforms |
title | Defect detection in magnetic tile images based on stationary wavelet transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20detection%20in%20magnetic%20tile%20images%20based%20on%20stationary%20wavelet%20transform&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=Yang,%20Chengli&rft.date=2016-10&rft.volume=83&rft.spage=78&rft.epage=87&rft.pages=78-87&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2016.04.006&rft_dat=%3Cproquest_cross%3E1835649027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835649027&rft_id=info:pmid/&rft_els_id=S0963869516300354&rfr_iscdi=true |