Defect detection in magnetic tile images based on stationary wavelet transform

A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NDT & E international : independent nondestructive testing and evaluation 2016-10, Vol.83, p.78-87
Hauptverfasser: Yang, Chengli, Liu, Peiyong, Yin, Guofu, Jiang, Honghai, Li, Xueqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue
container_start_page 78
container_title NDT & E international : independent nondestructive testing and evaluation
container_volume 83
creator Yang, Chengli
Liu, Peiyong
Yin, Guofu
Jiang, Honghai
Li, Xueqin
description A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enhancement were respectively used to eliminate the interference and enhance the target in subbands produced by SWT. To verify the validity of the proposed algorithm, extensive experiments were conducted in a novel machine vision based system. As the result shows, the proposed method achieves an accuracy rate of 92.86% in detecting various defects in magnetic tile surfaces with the average operation time of 0.5190s, and is superior to traditional methods in terms of the high reliability and accuracy.
doi_str_mv 10.1016/j.ndteint.2016.04.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835649027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869516300354</els_id><sourcerecordid>1835649027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-308dcecd3272cad04f2f61b409aef58857a3468d98de13d25915c707e5bc4e4e3</originalsourceid><addsrcrecordid>eNqFkEtLAzEcxIMoWB8fQcjRy655brInkfqEohc9hzT5r6RsszVJFb-9Ke3d0zAwMzA_hK4oaSmh3c2qjb5AiKVl1bZEtIR0R2hGteobSpU4RjPSd7zRXS9P0VnOK0IIE1zN0Os9DOAK9lCqhCniEPHafkYoweESRsChWsh4aTN4XAO52F3Qpl_8Y79hhIJLsjEPU1pfoJPBjhkuD3qOPh4f3ufPzeLt6WV-t2gcF6w0nGjvwHnOFHPWEzGwoaNLQXoLg9RaKstFp32vPVDumeypdIookEsnQAA_R9f73U2avraQi1mH7GAcbYRpmw3VXHaiJ0zVqNxHXZpyTjCYTaqX0q-hxOz4mZU58DM7foYIU_nV3u2-B_XHd4BksgsQHfiQKirjp_DPwh_1RXzt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835649027</pqid></control><display><type>article</type><title>Defect detection in magnetic tile images based on stationary wavelet transform</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Chengli ; Liu, Peiyong ; Yin, Guofu ; Jiang, Honghai ; Li, Xueqin</creator><creatorcontrib>Yang, Chengli ; Liu, Peiyong ; Yin, Guofu ; Jiang, Honghai ; Li, Xueqin</creatorcontrib><description>A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enhancement were respectively used to eliminate the interference and enhance the target in subbands produced by SWT. To verify the validity of the proposed algorithm, extensive experiments were conducted in a novel machine vision based system. As the result shows, the proposed method achieves an accuracy rate of 92.86% in detecting various defects in magnetic tile surfaces with the average operation time of 0.5190s, and is superior to traditional methods in terms of the high reliability and accuracy.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2016.04.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Defect detection ; Defects ; Filtering ; Filtration ; Image detection ; Machine vision ; Machine vision based system ; Magnetic tile ; Nondestructive testing ; Stationary wavelet transform ; Wavelet transforms</subject><ispartof>NDT &amp; E international : independent nondestructive testing and evaluation, 2016-10, Vol.83, p.78-87</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-308dcecd3272cad04f2f61b409aef58857a3468d98de13d25915c707e5bc4e4e3</citedby><cites>FETCH-LOGICAL-c342t-308dcecd3272cad04f2f61b409aef58857a3468d98de13d25915c707e5bc4e4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ndteint.2016.04.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Yang, Chengli</creatorcontrib><creatorcontrib>Liu, Peiyong</creatorcontrib><creatorcontrib>Yin, Guofu</creatorcontrib><creatorcontrib>Jiang, Honghai</creatorcontrib><creatorcontrib>Li, Xueqin</creatorcontrib><title>Defect detection in magnetic tile images based on stationary wavelet transform</title><title>NDT &amp; E international : independent nondestructive testing and evaluation</title><description>A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enhancement were respectively used to eliminate the interference and enhance the target in subbands produced by SWT. To verify the validity of the proposed algorithm, extensive experiments were conducted in a novel machine vision based system. As the result shows, the proposed method achieves an accuracy rate of 92.86% in detecting various defects in magnetic tile surfaces with the average operation time of 0.5190s, and is superior to traditional methods in terms of the high reliability and accuracy.</description><subject>Algorithms</subject><subject>Defect detection</subject><subject>Defects</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Image detection</subject><subject>Machine vision</subject><subject>Machine vision based system</subject><subject>Magnetic tile</subject><subject>Nondestructive testing</subject><subject>Stationary wavelet transform</subject><subject>Wavelet transforms</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEcxIMoWB8fQcjRy655brInkfqEohc9hzT5r6RsszVJFb-9Ke3d0zAwMzA_hK4oaSmh3c2qjb5AiKVl1bZEtIR0R2hGteobSpU4RjPSd7zRXS9P0VnOK0IIE1zN0Os9DOAK9lCqhCniEPHafkYoweESRsChWsh4aTN4XAO52F3Qpl_8Y79hhIJLsjEPU1pfoJPBjhkuD3qOPh4f3ufPzeLt6WV-t2gcF6w0nGjvwHnOFHPWEzGwoaNLQXoLg9RaKstFp32vPVDumeypdIookEsnQAA_R9f73U2avraQi1mH7GAcbYRpmw3VXHaiJ0zVqNxHXZpyTjCYTaqX0q-hxOz4mZU58DM7foYIU_nV3u2-B_XHd4BksgsQHfiQKirjp_DPwh_1RXzt</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Yang, Chengli</creator><creator>Liu, Peiyong</creator><creator>Yin, Guofu</creator><creator>Jiang, Honghai</creator><creator>Li, Xueqin</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201610</creationdate><title>Defect detection in magnetic tile images based on stationary wavelet transform</title><author>Yang, Chengli ; Liu, Peiyong ; Yin, Guofu ; Jiang, Honghai ; Li, Xueqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-308dcecd3272cad04f2f61b409aef58857a3468d98de13d25915c707e5bc4e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Defect detection</topic><topic>Defects</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Image detection</topic><topic>Machine vision</topic><topic>Machine vision based system</topic><topic>Magnetic tile</topic><topic>Nondestructive testing</topic><topic>Stationary wavelet transform</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chengli</creatorcontrib><creatorcontrib>Liu, Peiyong</creatorcontrib><creatorcontrib>Yin, Guofu</creatorcontrib><creatorcontrib>Jiang, Honghai</creatorcontrib><creatorcontrib>Li, Xueqin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chengli</au><au>Liu, Peiyong</au><au>Yin, Guofu</au><au>Jiang, Honghai</au><au>Li, Xueqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect detection in magnetic tile images based on stationary wavelet transform</atitle><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle><date>2016-10</date><risdate>2016</risdate><volume>83</volume><spage>78</spage><epage>87</epage><pages>78-87</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>A novel approach using stationary wavelet transform (SWT) is proposed for automatically detecting low-contrast defects under various light conditions in magnetic tile images. In this method, the uneven background was removed by Sobel operation. Then the index low-pass filtering and the nonlinear enhancement were respectively used to eliminate the interference and enhance the target in subbands produced by SWT. To verify the validity of the proposed algorithm, extensive experiments were conducted in a novel machine vision based system. As the result shows, the proposed method achieves an accuracy rate of 92.86% in detecting various defects in magnetic tile surfaces with the average operation time of 0.5190s, and is superior to traditional methods in terms of the high reliability and accuracy.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2016.04.006</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-8695
ispartof NDT & E international : independent nondestructive testing and evaluation, 2016-10, Vol.83, p.78-87
issn 0963-8695
1879-1174
language eng
recordid cdi_proquest_miscellaneous_1835649027
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Defect detection
Defects
Filtering
Filtration
Image detection
Machine vision
Machine vision based system
Magnetic tile
Nondestructive testing
Stationary wavelet transform
Wavelet transforms
title Defect detection in magnetic tile images based on stationary wavelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A37%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20detection%20in%20magnetic%20tile%20images%20based%20on%20stationary%20wavelet%20transform&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=Yang,%20Chengli&rft.date=2016-10&rft.volume=83&rft.spage=78&rft.epage=87&rft.pages=78-87&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2016.04.006&rft_dat=%3Cproquest_cross%3E1835649027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835649027&rft_id=info:pmid/&rft_els_id=S0963869516300354&rfr_iscdi=true