Estimating the strength of the nucleus material of comet 67P Churyumov–Gerasimenko

Consideration is given to the estimates for the strength of the consolidated material forming the bulk of the nucleus of comet 67P Churyumov–Gerasimenko and those for the strength of the surface material overlying the consolidated material at the sites of the first and last contact of the Philae lan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar system research 2016-07, Vol.50 (4), p.225-234
Hauptverfasser: Basilevsky, A. T., Krasil’nikov, S. S., Shiryaev, A. A., Mall, U., Keller, H. U., Skorov, Yu. V., Mottola, S., Hviid, S. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 4
container_start_page 225
container_title Solar system research
container_volume 50
creator Basilevsky, A. T.
Krasil’nikov, S. S.
Shiryaev, A. A.
Mall, U.
Keller, H. U.
Skorov, Yu. V.
Mottola, S.
Hviid, S. F.
description Consideration is given to the estimates for the strength of the consolidated material forming the bulk of the nucleus of comet 67P Churyumov–Gerasimenko and those for the strength of the surface material overlying the consolidated material at the sites of the first and last contact of the Philae lander with the nucleus. The strength of the consolidated material was estimated by analyzing the terrain characteristics of the steep cliffs, where the material is exposed on the surface. Based on these estimates, the tensile strength of the material is in the range from 1.5 to 100 Pa; the shear strength, from ∼13 to ⩾30 Pa; and the compressive strength, from 30 to 150 Pa, possibly up to 1.5 kPa. These are very low strength values. Given the dependence of the measurement results on the size of the measured object, they are similar to those of fresh dry snow at –10°C. The (compressive) strength of the surface material at the site of the first touchdown of Philae on the nucleus is estimated from the measurements of the dynamics of the surface impact by the spacecraft’s legs and the geometry of the impact pits as 1–3 kPa. For comparison with the measurement results for ice-containing materials in terrestrial laboratories, it needs to be taken into account that the rate of deformation by Philae ’s legs is four orders of magnitude higher than that in typical terrestrial measurements, leading to a possible overestimation of the strength by roughly an order of magnitude. There was an attemp to put one of the MUPUS sensors into the surface material at the site of the last contact of Philae with the nucleus. Noticeable penetration of the tester probe was not achieved that led to estimation of the minimum compressive strength of the material to be ⩾4 MPa4 This fairly high strength appears to indicate the presence of highly porous ice with grains “frozen” at contacts.
doi_str_mv 10.1134/S0038094616040018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835648256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835648256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-d0e5d3217bf1660cc868e0cfc955c17495cad9880db6034db5788a6677ee283c3</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AgCs7pH-Ct4MVL9aVJk_QoQ6cwUHCeS5e-bp1tM5NU2M3_wf_Qv8Rs8yCK4Ck_3uf7IHmEnFK4oJTxy0cApiDjggrgAFTtkUHYqpjxhO2TwaYcb-qH5Mi5ZRAAUgzI9Nr5ui183c0jv8DIeYvd3C8iU23PXa8b7F0UCNq6aDb32rToIyEfotGit-u-Na8fb-9jtIWrW-yezTE5qIrG4cnXOiRPN9fT0W08uR_fja4mseZc-bgETEuWUDmrqBCgtRIKQVc6S1NNJc9SXZSZUlDOBDBezlKpVCGElIiJYpoNyfmu78qalx6dz9vaaWyaokPTu5wqlgquklT8g1KqsoxlNNCzH3RpetuFh2wVpYKBDIrulLbGOYtVvrLhI-06p5BvRpL_GknIJLuMC7abo_3W-c_QJ68yjKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811116307</pqid></control><display><type>article</type><title>Estimating the strength of the nucleus material of comet 67P Churyumov–Gerasimenko</title><source>Springer Nature - Complete Springer Journals</source><creator>Basilevsky, A. T. ; Krasil’nikov, S. S. ; Shiryaev, A. A. ; Mall, U. ; Keller, H. U. ; Skorov, Yu. V. ; Mottola, S. ; Hviid, S. F.</creator><creatorcontrib>Basilevsky, A. T. ; Krasil’nikov, S. S. ; Shiryaev, A. A. ; Mall, U. ; Keller, H. U. ; Skorov, Yu. V. ; Mottola, S. ; Hviid, S. F.</creatorcontrib><description>Consideration is given to the estimates for the strength of the consolidated material forming the bulk of the nucleus of comet 67P Churyumov–Gerasimenko and those for the strength of the surface material overlying the consolidated material at the sites of the first and last contact of the Philae lander with the nucleus. The strength of the consolidated material was estimated by analyzing the terrain characteristics of the steep cliffs, where the material is exposed on the surface. Based on these estimates, the tensile strength of the material is in the range from 1.5 to 100 Pa; the shear strength, from ∼13 to ⩾30 Pa; and the compressive strength, from 30 to 150 Pa, possibly up to 1.5 kPa. These are very low strength values. Given the dependence of the measurement results on the size of the measured object, they are similar to those of fresh dry snow at –10°C. The (compressive) strength of the surface material at the site of the first touchdown of Philae on the nucleus is estimated from the measurements of the dynamics of the surface impact by the spacecraft’s legs and the geometry of the impact pits as 1–3 kPa. For comparison with the measurement results for ice-containing materials in terrestrial laboratories, it needs to be taken into account that the rate of deformation by Philae ’s legs is four orders of magnitude higher than that in typical terrestrial measurements, leading to a possible overestimation of the strength by roughly an order of magnitude. There was an attemp to put one of the MUPUS sensors into the surface material at the site of the last contact of Philae with the nucleus. Noticeable penetration of the tester probe was not achieved that led to estimation of the minimum compressive strength of the material to be ⩾4 MPa4 This fairly high strength appears to indicate the presence of highly porous ice with grains “frozen” at contacts.</description><identifier>ISSN: 0038-0946</identifier><identifier>EISSN: 1608-3423</identifier><identifier>DOI: 10.1134/S0038094616040018</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Astrophysics and Cosmology ; Comet nuclei ; Comets ; Compressive strength ; Consolidation ; Contact ; Estimates ; Nuclei ; Observations and Techniques ; Physics ; Physics and Astronomy ; Planetology ; Rosetta mission ; Shear strength ; Solar system ; Spacecraft ; Strength ; Tensile strength</subject><ispartof>Solar system research, 2016-07, Vol.50 (4), p.225-234</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-d0e5d3217bf1660cc868e0cfc955c17495cad9880db6034db5788a6677ee283c3</citedby><cites>FETCH-LOGICAL-c448t-d0e5d3217bf1660cc868e0cfc955c17495cad9880db6034db5788a6677ee283c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0038094616040018$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0038094616040018$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Basilevsky, A. T.</creatorcontrib><creatorcontrib>Krasil’nikov, S. S.</creatorcontrib><creatorcontrib>Shiryaev, A. A.</creatorcontrib><creatorcontrib>Mall, U.</creatorcontrib><creatorcontrib>Keller, H. U.</creatorcontrib><creatorcontrib>Skorov, Yu. V.</creatorcontrib><creatorcontrib>Mottola, S.</creatorcontrib><creatorcontrib>Hviid, S. F.</creatorcontrib><title>Estimating the strength of the nucleus material of comet 67P Churyumov–Gerasimenko</title><title>Solar system research</title><addtitle>Sol Syst Res</addtitle><description>Consideration is given to the estimates for the strength of the consolidated material forming the bulk of the nucleus of comet 67P Churyumov–Gerasimenko and those for the strength of the surface material overlying the consolidated material at the sites of the first and last contact of the Philae lander with the nucleus. The strength of the consolidated material was estimated by analyzing the terrain characteristics of the steep cliffs, where the material is exposed on the surface. Based on these estimates, the tensile strength of the material is in the range from 1.5 to 100 Pa; the shear strength, from ∼13 to ⩾30 Pa; and the compressive strength, from 30 to 150 Pa, possibly up to 1.5 kPa. These are very low strength values. Given the dependence of the measurement results on the size of the measured object, they are similar to those of fresh dry snow at –10°C. The (compressive) strength of the surface material at the site of the first touchdown of Philae on the nucleus is estimated from the measurements of the dynamics of the surface impact by the spacecraft’s legs and the geometry of the impact pits as 1–3 kPa. For comparison with the measurement results for ice-containing materials in terrestrial laboratories, it needs to be taken into account that the rate of deformation by Philae ’s legs is four orders of magnitude higher than that in typical terrestrial measurements, leading to a possible overestimation of the strength by roughly an order of magnitude. There was an attemp to put one of the MUPUS sensors into the surface material at the site of the last contact of Philae with the nucleus. Noticeable penetration of the tester probe was not achieved that led to estimation of the minimum compressive strength of the material to be ⩾4 MPa4 This fairly high strength appears to indicate the presence of highly porous ice with grains “frozen” at contacts.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Astrophysics and Cosmology</subject><subject>Comet nuclei</subject><subject>Comets</subject><subject>Compressive strength</subject><subject>Consolidation</subject><subject>Contact</subject><subject>Estimates</subject><subject>Nuclei</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Planetology</subject><subject>Rosetta mission</subject><subject>Shear strength</subject><subject>Solar system</subject><subject>Spacecraft</subject><subject>Strength</subject><subject>Tensile strength</subject><issn>0038-0946</issn><issn>1608-3423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqN0c9LwzAUB_AgCs7pH-Ct4MVL9aVJk_QoQ6cwUHCeS5e-bp1tM5NU2M3_wf_Qv8Rs8yCK4Ck_3uf7IHmEnFK4oJTxy0cApiDjggrgAFTtkUHYqpjxhO2TwaYcb-qH5Mi5ZRAAUgzI9Nr5ui183c0jv8DIeYvd3C8iU23PXa8b7F0UCNq6aDb32rToIyEfotGit-u-Na8fb-9jtIWrW-yezTE5qIrG4cnXOiRPN9fT0W08uR_fja4mseZc-bgETEuWUDmrqBCgtRIKQVc6S1NNJc9SXZSZUlDOBDBezlKpVCGElIiJYpoNyfmu78qalx6dz9vaaWyaokPTu5wqlgquklT8g1KqsoxlNNCzH3RpetuFh2wVpYKBDIrulLbGOYtVvrLhI-06p5BvRpL_GknIJLuMC7abo_3W-c_QJ68yjKg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Basilevsky, A. T.</creator><creator>Krasil’nikov, S. S.</creator><creator>Shiryaev, A. A.</creator><creator>Mall, U.</creator><creator>Keller, H. U.</creator><creator>Skorov, Yu. V.</creator><creator>Mottola, S.</creator><creator>Hviid, S. F.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160701</creationdate><title>Estimating the strength of the nucleus material of comet 67P Churyumov–Gerasimenko</title><author>Basilevsky, A. T. ; Krasil’nikov, S. S. ; Shiryaev, A. A. ; Mall, U. ; Keller, H. U. ; Skorov, Yu. V. ; Mottola, S. ; Hviid, S. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-d0e5d3217bf1660cc868e0cfc955c17495cad9880db6034db5788a6677ee283c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Astrophysics and Cosmology</topic><topic>Comet nuclei</topic><topic>Comets</topic><topic>Compressive strength</topic><topic>Consolidation</topic><topic>Contact</topic><topic>Estimates</topic><topic>Nuclei</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Planetology</topic><topic>Rosetta mission</topic><topic>Shear strength</topic><topic>Solar system</topic><topic>Spacecraft</topic><topic>Strength</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basilevsky, A. T.</creatorcontrib><creatorcontrib>Krasil’nikov, S. S.</creatorcontrib><creatorcontrib>Shiryaev, A. A.</creatorcontrib><creatorcontrib>Mall, U.</creatorcontrib><creatorcontrib>Keller, H. U.</creatorcontrib><creatorcontrib>Skorov, Yu. V.</creatorcontrib><creatorcontrib>Mottola, S.</creatorcontrib><creatorcontrib>Hviid, S. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar system research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basilevsky, A. T.</au><au>Krasil’nikov, S. S.</au><au>Shiryaev, A. A.</au><au>Mall, U.</au><au>Keller, H. U.</au><au>Skorov, Yu. V.</au><au>Mottola, S.</au><au>Hviid, S. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the strength of the nucleus material of comet 67P Churyumov–Gerasimenko</atitle><jtitle>Solar system research</jtitle><stitle>Sol Syst Res</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>50</volume><issue>4</issue><spage>225</spage><epage>234</epage><pages>225-234</pages><issn>0038-0946</issn><eissn>1608-3423</eissn><abstract>Consideration is given to the estimates for the strength of the consolidated material forming the bulk of the nucleus of comet 67P Churyumov–Gerasimenko and those for the strength of the surface material overlying the consolidated material at the sites of the first and last contact of the Philae lander with the nucleus. The strength of the consolidated material was estimated by analyzing the terrain characteristics of the steep cliffs, where the material is exposed on the surface. Based on these estimates, the tensile strength of the material is in the range from 1.5 to 100 Pa; the shear strength, from ∼13 to ⩾30 Pa; and the compressive strength, from 30 to 150 Pa, possibly up to 1.5 kPa. These are very low strength values. Given the dependence of the measurement results on the size of the measured object, they are similar to those of fresh dry snow at –10°C. The (compressive) strength of the surface material at the site of the first touchdown of Philae on the nucleus is estimated from the measurements of the dynamics of the surface impact by the spacecraft’s legs and the geometry of the impact pits as 1–3 kPa. For comparison with the measurement results for ice-containing materials in terrestrial laboratories, it needs to be taken into account that the rate of deformation by Philae ’s legs is four orders of magnitude higher than that in typical terrestrial measurements, leading to a possible overestimation of the strength by roughly an order of magnitude. There was an attemp to put one of the MUPUS sensors into the surface material at the site of the last contact of Philae with the nucleus. Noticeable penetration of the tester probe was not achieved that led to estimation of the minimum compressive strength of the material to be ⩾4 MPa4 This fairly high strength appears to indicate the presence of highly porous ice with grains “frozen” at contacts.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0038094616040018</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-0946
ispartof Solar system research, 2016-07, Vol.50 (4), p.225-234
issn 0038-0946
1608-3423
language eng
recordid cdi_proquest_miscellaneous_1835648256
source Springer Nature - Complete Springer Journals
subjects Astronomy
Astrophysics and Astroparticles
Astrophysics and Cosmology
Comet nuclei
Comets
Compressive strength
Consolidation
Contact
Estimates
Nuclei
Observations and Techniques
Physics
Physics and Astronomy
Planetology
Rosetta mission
Shear strength
Solar system
Spacecraft
Strength
Tensile strength
title Estimating the strength of the nucleus material of comet 67P Churyumov–Gerasimenko
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20strength%20of%20the%20nucleus%20material%20of%20comet%2067P%20Churyumov%E2%80%93Gerasimenko&rft.jtitle=Solar%20system%20research&rft.au=Basilevsky,%20A.%20T.&rft.date=2016-07-01&rft.volume=50&rft.issue=4&rft.spage=225&rft.epage=234&rft.pages=225-234&rft.issn=0038-0946&rft.eissn=1608-3423&rft_id=info:doi/10.1134/S0038094616040018&rft_dat=%3Cproquest_cross%3E1835648256%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811116307&rft_id=info:pmid/&rfr_iscdi=true