NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes
We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M 200 ∼ 1010 M⊙) to Milky Way (M 200 ∼ 1012 M⊙)...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2016-09, Vol.461 (3), p.2658-2675 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2675 |
---|---|
container_issue | 3 |
container_start_page | 2658 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 461 |
creator | Dutton, Aaron A. Macciò, Andrea V. Dekel, Avishai Wang, Liang Stinson, Gregory Obreja, Aura Di Cintio, Arianna Brook, Chris Buck, Tobias Kang, Xi |
description | We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M
200 ∼ 1010 M⊙) to Milky Way (M
200 ∼ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ∼10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ϵSF ≡ (M
star/M
200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ϵR ≡ r
1/2/R
200. We provide an analytic formula depending on ϵSF and ϵR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes. |
doi_str_mv | 10.1093/mnras/stw1537 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835647039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw1537</oup_id><sourcerecordid>1819135446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-198305ad38eb2ae0f30bf0b17971b8c54c4c4e049169763959ac7ebeeeaef6473</originalsourceid><addsrcrecordid>eNqN0UFLwzAUB_AgCs7p0XvAi5e6ZGnSxtsY6gbDXRS8lTR93TrbpCap029vtwmCFyWHx4Mf7-XxR-iSkhtKJBs1xik_8mFLOUuO0IAywaOxFOIYDQhhPEoTSk_RmfcbQkjMxmKA3ON8Nlni-cstDmvAztaAbYlXyuPKlLXdeqxMgW0XDk1lcOGq98qs9l5bE5zSobJm7-CjVcbvun6ItnWBC-VecaNCAIfXqrbgz9FJqWoPF991iJ7v756ms2ixfJhPJ4tIx0KGiMqUEa4KlkI-VkBKRvKS5DSRCc1TzWPdPyCxpEImgkkulU4gBwAFpYgTNkTXh7mts28d-JA1lddQ18qA7XxGU8Z7R5j8B6WSMh7HoqdXv-jGds70h-wUE2PJxW53dFDaWe8dlFnrqka5z4ySbBdWtg8r-w7r5wO2a_-gXxF0luE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813629567</pqid></control><display><type>article</type><title>NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes</title><source>Oxford Journals Open Access Collection</source><creator>Dutton, Aaron A. ; Macciò, Andrea V. ; Dekel, Avishai ; Wang, Liang ; Stinson, Gregory ; Obreja, Aura ; Di Cintio, Arianna ; Brook, Chris ; Buck, Tobias ; Kang, Xi</creator><creatorcontrib>Dutton, Aaron A. ; Macciò, Andrea V. ; Dekel, Avishai ; Wang, Liang ; Stinson, Gregory ; Obreja, Aura ; Di Cintio, Arianna ; Brook, Chris ; Buck, Tobias ; Kang, Xi</creatorcontrib><description>We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M
200 ∼ 1010 M⊙) to Milky Way (M
200 ∼ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ∼10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ϵSF ≡ (M
star/M
200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ϵR ≡ r
1/2/R
200. We provide an analytic formula depending on ϵSF and ϵR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw1537</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Cold dark matter ; Correlation analysis ; Dark matter ; Fluid mechanics ; Galactic halos ; Galaxies ; Galaxy formation ; Inflow ; Mathematical models ; Milky Way ; Outflow ; Simulation ; Star & galaxy formation</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2016-09, Vol.461 (3), p.2658-2675</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Sep 21, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-198305ad38eb2ae0f30bf0b17971b8c54c4c4e049169763959ac7ebeeeaef6473</citedby><cites>FETCH-LOGICAL-c469t-198305ad38eb2ae0f30bf0b17971b8c54c4c4e049169763959ac7ebeeeaef6473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw1537$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Dutton, Aaron A.</creatorcontrib><creatorcontrib>Macciò, Andrea V.</creatorcontrib><creatorcontrib>Dekel, Avishai</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Stinson, Gregory</creatorcontrib><creatorcontrib>Obreja, Aura</creatorcontrib><creatorcontrib>Di Cintio, Arianna</creatorcontrib><creatorcontrib>Brook, Chris</creatorcontrib><creatorcontrib>Buck, Tobias</creatorcontrib><creatorcontrib>Kang, Xi</creatorcontrib><title>NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes</title><title>Monthly notices of the Royal Astronomical Society</title><description>We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M
200 ∼ 1010 M⊙) to Milky Way (M
200 ∼ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ∼10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ϵSF ≡ (M
star/M
200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ϵR ≡ r
1/2/R
200. We provide an analytic formula depending on ϵSF and ϵR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.</description><subject>Cold dark matter</subject><subject>Correlation analysis</subject><subject>Dark matter</subject><subject>Fluid mechanics</subject><subject>Galactic halos</subject><subject>Galaxies</subject><subject>Galaxy formation</subject><subject>Inflow</subject><subject>Mathematical models</subject><subject>Milky Way</subject><subject>Outflow</subject><subject>Simulation</subject><subject>Star & galaxy formation</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0UFLwzAUB_AgCs7p0XvAi5e6ZGnSxtsY6gbDXRS8lTR93TrbpCap029vtwmCFyWHx4Mf7-XxR-iSkhtKJBs1xik_8mFLOUuO0IAywaOxFOIYDQhhPEoTSk_RmfcbQkjMxmKA3ON8Nlni-cstDmvAztaAbYlXyuPKlLXdeqxMgW0XDk1lcOGq98qs9l5bE5zSobJm7-CjVcbvun6ItnWBC-VecaNCAIfXqrbgz9FJqWoPF991iJ7v756ms2ixfJhPJ4tIx0KGiMqUEa4KlkI-VkBKRvKS5DSRCc1TzWPdPyCxpEImgkkulU4gBwAFpYgTNkTXh7mts28d-JA1lddQ18qA7XxGU8Z7R5j8B6WSMh7HoqdXv-jGds70h-wUE2PJxW53dFDaWe8dlFnrqka5z4ySbBdWtg8r-w7r5wO2a_-gXxF0luE</recordid><startdate>20160921</startdate><enddate>20160921</enddate><creator>Dutton, Aaron A.</creator><creator>Macciò, Andrea V.</creator><creator>Dekel, Avishai</creator><creator>Wang, Liang</creator><creator>Stinson, Gregory</creator><creator>Obreja, Aura</creator><creator>Di Cintio, Arianna</creator><creator>Brook, Chris</creator><creator>Buck, Tobias</creator><creator>Kang, Xi</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20160921</creationdate><title>NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes</title><author>Dutton, Aaron A. ; Macciò, Andrea V. ; Dekel, Avishai ; Wang, Liang ; Stinson, Gregory ; Obreja, Aura ; Di Cintio, Arianna ; Brook, Chris ; Buck, Tobias ; Kang, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-198305ad38eb2ae0f30bf0b17971b8c54c4c4e049169763959ac7ebeeeaef6473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cold dark matter</topic><topic>Correlation analysis</topic><topic>Dark matter</topic><topic>Fluid mechanics</topic><topic>Galactic halos</topic><topic>Galaxies</topic><topic>Galaxy formation</topic><topic>Inflow</topic><topic>Mathematical models</topic><topic>Milky Way</topic><topic>Outflow</topic><topic>Simulation</topic><topic>Star & galaxy formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutton, Aaron A.</creatorcontrib><creatorcontrib>Macciò, Andrea V.</creatorcontrib><creatorcontrib>Dekel, Avishai</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Stinson, Gregory</creatorcontrib><creatorcontrib>Obreja, Aura</creatorcontrib><creatorcontrib>Di Cintio, Arianna</creatorcontrib><creatorcontrib>Brook, Chris</creatorcontrib><creatorcontrib>Buck, Tobias</creatorcontrib><creatorcontrib>Kang, Xi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dutton, Aaron A.</au><au>Macciò, Andrea V.</au><au>Dekel, Avishai</au><au>Wang, Liang</au><au>Stinson, Gregory</au><au>Obreja, Aura</au><au>Di Cintio, Arianna</au><au>Brook, Chris</au><au>Buck, Tobias</au><au>Kang, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2016-09-21</date><risdate>2016</risdate><volume>461</volume><issue>3</issue><spage>2658</spage><epage>2675</epage><pages>2658-2675</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M
200 ∼ 1010 M⊙) to Milky Way (M
200 ∼ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ∼10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ϵSF ≡ (M
star/M
200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ϵR ≡ r
1/2/R
200. We provide an analytic formula depending on ϵSF and ϵR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw1537</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2016-09, Vol.461 (3), p.2658-2675 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835647039 |
source | Oxford Journals Open Access Collection |
subjects | Cold dark matter Correlation analysis Dark matter Fluid mechanics Galactic halos Galaxies Galaxy formation Inflow Mathematical models Milky Way Outflow Simulation Star & galaxy formation |
title | NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NIHAO%20IX:%20the%20role%20of%20gas%20inflows%20and%20outflows%20in%20driving%20the%20contraction%20and%20expansion%20of%20cold%20dark%20matter%20haloes&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Dutton,%20Aaron%20A.&rft.date=2016-09-21&rft.volume=461&rft.issue=3&rft.spage=2658&rft.epage=2675&rft.pages=2658-2675&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw1537&rft_dat=%3Cproquest_TOX%3E1819135446%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813629567&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw1537&rfr_iscdi=true |