NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes

We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M 200 ∼ 1010 M⊙) to Milky Way (M 200 ∼ 1012 M⊙)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-09, Vol.461 (3), p.2658-2675
Hauptverfasser: Dutton, Aaron A., Macciò, Andrea V., Dekel, Avishai, Wang, Liang, Stinson, Gregory, Obreja, Aura, Di Cintio, Arianna, Brook, Chris, Buck, Tobias, Kang, Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2675
container_issue 3
container_start_page 2658
container_title Monthly notices of the Royal Astronomical Society
container_volume 461
creator Dutton, Aaron A.
Macciò, Andrea V.
Dekel, Avishai
Wang, Liang
Stinson, Gregory
Obreja, Aura
Di Cintio, Arianna
Brook, Chris
Buck, Tobias
Kang, Xi
description We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M 200 ∼ 1010 M⊙) to Milky Way (M 200 ∼ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ∼10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ϵSF ≡ (M star/M 200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ϵR ≡ r 1/2/R 200. We provide an analytic formula depending on ϵSF and ϵR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.
doi_str_mv 10.1093/mnras/stw1537
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835647039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw1537</oup_id><sourcerecordid>1819135446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-198305ad38eb2ae0f30bf0b17971b8c54c4c4e049169763959ac7ebeeeaef6473</originalsourceid><addsrcrecordid>eNqN0UFLwzAUB_AgCs7p0XvAi5e6ZGnSxtsY6gbDXRS8lTR93TrbpCap029vtwmCFyWHx4Mf7-XxR-iSkhtKJBs1xik_8mFLOUuO0IAywaOxFOIYDQhhPEoTSk_RmfcbQkjMxmKA3ON8Nlni-cstDmvAztaAbYlXyuPKlLXdeqxMgW0XDk1lcOGq98qs9l5bE5zSobJm7-CjVcbvun6ItnWBC-VecaNCAIfXqrbgz9FJqWoPF991iJ7v756ms2ixfJhPJ4tIx0KGiMqUEa4KlkI-VkBKRvKS5DSRCc1TzWPdPyCxpEImgkkulU4gBwAFpYgTNkTXh7mts28d-JA1lddQ18qA7XxGU8Z7R5j8B6WSMh7HoqdXv-jGds70h-wUE2PJxW53dFDaWe8dlFnrqka5z4ySbBdWtg8r-w7r5wO2a_-gXxF0luE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813629567</pqid></control><display><type>article</type><title>NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes</title><source>Oxford Journals Open Access Collection</source><creator>Dutton, Aaron A. ; Macciò, Andrea V. ; Dekel, Avishai ; Wang, Liang ; Stinson, Gregory ; Obreja, Aura ; Di Cintio, Arianna ; Brook, Chris ; Buck, Tobias ; Kang, Xi</creator><creatorcontrib>Dutton, Aaron A. ; Macciò, Andrea V. ; Dekel, Avishai ; Wang, Liang ; Stinson, Gregory ; Obreja, Aura ; Di Cintio, Arianna ; Brook, Chris ; Buck, Tobias ; Kang, Xi</creatorcontrib><description>We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M 200 ∼ 1010 M⊙) to Milky Way (M 200 ∼ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ∼10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ϵSF ≡ (M star/M 200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ϵR ≡ r 1/2/R 200. We provide an analytic formula depending on ϵSF and ϵR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw1537</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Cold dark matter ; Correlation analysis ; Dark matter ; Fluid mechanics ; Galactic halos ; Galaxies ; Galaxy formation ; Inflow ; Mathematical models ; Milky Way ; Outflow ; Simulation ; Star &amp; galaxy formation</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2016-09, Vol.461 (3), p.2658-2675</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Sep 21, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-198305ad38eb2ae0f30bf0b17971b8c54c4c4e049169763959ac7ebeeeaef6473</citedby><cites>FETCH-LOGICAL-c469t-198305ad38eb2ae0f30bf0b17971b8c54c4c4e049169763959ac7ebeeeaef6473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw1537$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Dutton, Aaron A.</creatorcontrib><creatorcontrib>Macciò, Andrea V.</creatorcontrib><creatorcontrib>Dekel, Avishai</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Stinson, Gregory</creatorcontrib><creatorcontrib>Obreja, Aura</creatorcontrib><creatorcontrib>Di Cintio, Arianna</creatorcontrib><creatorcontrib>Brook, Chris</creatorcontrib><creatorcontrib>Buck, Tobias</creatorcontrib><creatorcontrib>Kang, Xi</creatorcontrib><title>NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes</title><title>Monthly notices of the Royal Astronomical Society</title><description>We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M 200 ∼ 1010 M⊙) to Milky Way (M 200 ∼ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ∼10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ϵSF ≡ (M star/M 200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ϵR ≡ r 1/2/R 200. We provide an analytic formula depending on ϵSF and ϵR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.</description><subject>Cold dark matter</subject><subject>Correlation analysis</subject><subject>Dark matter</subject><subject>Fluid mechanics</subject><subject>Galactic halos</subject><subject>Galaxies</subject><subject>Galaxy formation</subject><subject>Inflow</subject><subject>Mathematical models</subject><subject>Milky Way</subject><subject>Outflow</subject><subject>Simulation</subject><subject>Star &amp; galaxy formation</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0UFLwzAUB_AgCs7p0XvAi5e6ZGnSxtsY6gbDXRS8lTR93TrbpCap029vtwmCFyWHx4Mf7-XxR-iSkhtKJBs1xik_8mFLOUuO0IAywaOxFOIYDQhhPEoTSk_RmfcbQkjMxmKA3ON8Nlni-cstDmvAztaAbYlXyuPKlLXdeqxMgW0XDk1lcOGq98qs9l5bE5zSobJm7-CjVcbvun6ItnWBC-VecaNCAIfXqrbgz9FJqWoPF991iJ7v756ms2ixfJhPJ4tIx0KGiMqUEa4KlkI-VkBKRvKS5DSRCc1TzWPdPyCxpEImgkkulU4gBwAFpYgTNkTXh7mts28d-JA1lddQ18qA7XxGU8Z7R5j8B6WSMh7HoqdXv-jGds70h-wUE2PJxW53dFDaWe8dlFnrqka5z4ySbBdWtg8r-w7r5wO2a_-gXxF0luE</recordid><startdate>20160921</startdate><enddate>20160921</enddate><creator>Dutton, Aaron A.</creator><creator>Macciò, Andrea V.</creator><creator>Dekel, Avishai</creator><creator>Wang, Liang</creator><creator>Stinson, Gregory</creator><creator>Obreja, Aura</creator><creator>Di Cintio, Arianna</creator><creator>Brook, Chris</creator><creator>Buck, Tobias</creator><creator>Kang, Xi</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20160921</creationdate><title>NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes</title><author>Dutton, Aaron A. ; Macciò, Andrea V. ; Dekel, Avishai ; Wang, Liang ; Stinson, Gregory ; Obreja, Aura ; Di Cintio, Arianna ; Brook, Chris ; Buck, Tobias ; Kang, Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-198305ad38eb2ae0f30bf0b17971b8c54c4c4e049169763959ac7ebeeeaef6473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cold dark matter</topic><topic>Correlation analysis</topic><topic>Dark matter</topic><topic>Fluid mechanics</topic><topic>Galactic halos</topic><topic>Galaxies</topic><topic>Galaxy formation</topic><topic>Inflow</topic><topic>Mathematical models</topic><topic>Milky Way</topic><topic>Outflow</topic><topic>Simulation</topic><topic>Star &amp; galaxy formation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutton, Aaron A.</creatorcontrib><creatorcontrib>Macciò, Andrea V.</creatorcontrib><creatorcontrib>Dekel, Avishai</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>Stinson, Gregory</creatorcontrib><creatorcontrib>Obreja, Aura</creatorcontrib><creatorcontrib>Di Cintio, Arianna</creatorcontrib><creatorcontrib>Brook, Chris</creatorcontrib><creatorcontrib>Buck, Tobias</creatorcontrib><creatorcontrib>Kang, Xi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dutton, Aaron A.</au><au>Macciò, Andrea V.</au><au>Dekel, Avishai</au><au>Wang, Liang</au><au>Stinson, Gregory</au><au>Obreja, Aura</au><au>Di Cintio, Arianna</au><au>Brook, Chris</au><au>Buck, Tobias</au><au>Kang, Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2016-09-21</date><risdate>2016</risdate><volume>461</volume><issue>3</issue><spage>2658</spage><epage>2675</epage><pages>2658-2675</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We use ∼100 cosmological galaxy formation ‘zoom-in’ simulations using the smoothed particle hydrodynamics code gasoline to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M 200 ∼ 1010 M⊙) to Milky Way (M 200 ∼ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ∼10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ϵSF ≡ (M star/M 200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ϵR ≡ r 1/2/R 200. We provide an analytic formula depending on ϵSF and ϵR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw1537</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2016-09, Vol.461 (3), p.2658-2675
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1835647039
source Oxford Journals Open Access Collection
subjects Cold dark matter
Correlation analysis
Dark matter
Fluid mechanics
Galactic halos
Galaxies
Galaxy formation
Inflow
Mathematical models
Milky Way
Outflow
Simulation
Star & galaxy formation
title NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NIHAO%20IX:%20the%20role%20of%20gas%20inflows%20and%20outflows%20in%20driving%20the%20contraction%20and%20expansion%20of%20cold%20dark%20matter%20haloes&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Dutton,%20Aaron%20A.&rft.date=2016-09-21&rft.volume=461&rft.issue=3&rft.spage=2658&rft.epage=2675&rft.pages=2658-2675&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw1537&rft_dat=%3Cproquest_TOX%3E1819135446%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813629567&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw1537&rfr_iscdi=true