Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule
The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions f...
Gespeichert in:
Veröffentlicht in: | IET image processing 2016-06, Vol.10 (6), p.448-455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 6 |
container_start_page | 448 |
container_title | IET image processing |
container_volume | 10 |
creator | Kasmi, Reda Mokrani, Karim |
description | The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions from melanoma could enable earlier detection of melanoma. In this study, automatic ABCD scoring of dermoscopy lesions is implemented. Pre-processing enables automatic detection of hair using Gabor filters and lesion boundaries using geodesic active contours. Algorithms are implemented to extract the characteristics of ABCD attributes. Methods used here combine existing methods with novel methods to detect colour asymmetry and dermoscopic structures. To classify lesions as melanoma or benign nevus, the total dermoscopy score is calculated. The experimental results, using 200 dermoscopic images, where 80 are malignant melanomas and 120 benign lesions, show that the algorithm achieves 91.25% sensitivity of 91.25 and 95.83% specificity. This is comparable to the 92.8% sensitivity and 90.3% specificity reported for human implementation of the ABCD rule. The experimental results show that the extracted features can be used to build a promising classifier for melanoma detection. |
doi_str_mv | 10.1049/iet-ipr.2015.0385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835641311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835641311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4015-9922a2c4074e94ace008641615e7ee64645fc0689bb33b8327a0a4d6964f87d83</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4soOKcfwFuOeuhMmj9tdtvmpoOBIvMcsu6tZKZpbVpk396UyfAgespL-D2_N3mi6JrgEcFM3hloY1M3owQTPsI04yfRgKScxFKI9PQ4c3keXXi_w5hLnPFBlM-s9t4UJtetqRyqClRqa96cdi0qwWpXlRppt0UbcOEa-XfjkAUfwn6MTFlbKMG1R1p3bSBak6PJdHaPms7CZXRWaOvh6vscRq-L-Xr2GK-eHpazySrOWXh1LGWS6CTMKQPJdA4YZ4IRQTikAIIJxosci0xuNpRuMpqkGmu2FVKwIku3GR1GN4feuqk-OvCtKo3PwYZPQNV5RTLKQyElJETJIZo3lfcNFKpuTKmbvSJY9UJVEKqCUNULVb3QwIwPzKexsP8fUMvnl2S6wITRHo4PcB_bVV3jgok_l93-kl_O133rjx31tqBf-zaZHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835641311</pqid></control><display><type>article</type><title>Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule</title><source>Wiley Online Library Open Access</source><creator>Kasmi, Reda ; Mokrani, Karim</creator><creatorcontrib>Kasmi, Reda ; Mokrani, Karim</creatorcontrib><description>The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions from melanoma could enable earlier detection of melanoma. In this study, automatic ABCD scoring of dermoscopy lesions is implemented. Pre-processing enables automatic detection of hair using Gabor filters and lesion boundaries using geodesic active contours. Algorithms are implemented to extract the characteristics of ABCD attributes. Methods used here combine existing methods with novel methods to detect colour asymmetry and dermoscopic structures. To classify lesions as melanoma or benign nevus, the total dermoscopy score is calculated. The experimental results, using 200 dermoscopic images, where 80 are malignant melanomas and 120 benign lesions, show that the algorithm achieves 91.25% sensitivity of 91.25 and 95.83% specificity. This is comparable to the 92.8% sensitivity and 90.3% specificity reported for human implementation of the ABCD rule. The experimental results show that the extracted features can be used to build a promising classifier for melanoma detection.</description><identifier>ISSN: 1751-9659</identifier><identifier>ISSN: 1751-9667</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/iet-ipr.2015.0385</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>ABCD features ; Algorithms ; Asymmetry ; automatic ABCD rule ; automatic ABCD scoring ; Automation ; benign skin lesions ; biomedical optical imaging ; cancer ; Classification ; Colour ; colour asymmetry ; Construction ; dermoscopic images ; dermoscopic structures ; dermoscopy ; feature extraction ; Gabor filters ; geodesic active contours ; image classification ; lesion boundaries ; Lesions ; malignant melanoma classification ; medical image processing ; melanoma detection ; Scoring ; scoring method ; skin</subject><ispartof>IET image processing, 2016-06, Vol.10 (6), p.448-455</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Image Processing published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4015-9922a2c4074e94ace008641615e7ee64645fc0689bb33b8327a0a4d6964f87d83</citedby><cites>FETCH-LOGICAL-c4015-9922a2c4074e94ace008641615e7ee64645fc0689bb33b8327a0a4d6964f87d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-ipr.2015.0385$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-ipr.2015.0385$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2015.0385$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Kasmi, Reda</creatorcontrib><creatorcontrib>Mokrani, Karim</creatorcontrib><title>Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule</title><title>IET image processing</title><description>The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions from melanoma could enable earlier detection of melanoma. In this study, automatic ABCD scoring of dermoscopy lesions is implemented. Pre-processing enables automatic detection of hair using Gabor filters and lesion boundaries using geodesic active contours. Algorithms are implemented to extract the characteristics of ABCD attributes. Methods used here combine existing methods with novel methods to detect colour asymmetry and dermoscopic structures. To classify lesions as melanoma or benign nevus, the total dermoscopy score is calculated. The experimental results, using 200 dermoscopic images, where 80 are malignant melanomas and 120 benign lesions, show that the algorithm achieves 91.25% sensitivity of 91.25 and 95.83% specificity. This is comparable to the 92.8% sensitivity and 90.3% specificity reported for human implementation of the ABCD rule. The experimental results show that the extracted features can be used to build a promising classifier for melanoma detection.</description><subject>ABCD features</subject><subject>Algorithms</subject><subject>Asymmetry</subject><subject>automatic ABCD rule</subject><subject>automatic ABCD scoring</subject><subject>Automation</subject><subject>benign skin lesions</subject><subject>biomedical optical imaging</subject><subject>cancer</subject><subject>Classification</subject><subject>Colour</subject><subject>colour asymmetry</subject><subject>Construction</subject><subject>dermoscopic images</subject><subject>dermoscopic structures</subject><subject>dermoscopy</subject><subject>feature extraction</subject><subject>Gabor filters</subject><subject>geodesic active contours</subject><subject>image classification</subject><subject>lesion boundaries</subject><subject>Lesions</subject><subject>malignant melanoma classification</subject><subject>medical image processing</subject><subject>melanoma detection</subject><subject>Scoring</subject><subject>scoring method</subject><subject>skin</subject><issn>1751-9659</issn><issn>1751-9667</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYh4soOKcfwFuOeuhMmj9tdtvmpoOBIvMcsu6tZKZpbVpk396UyfAgespL-D2_N3mi6JrgEcFM3hloY1M3owQTPsI04yfRgKScxFKI9PQ4c3keXXi_w5hLnPFBlM-s9t4UJtetqRyqClRqa96cdi0qwWpXlRppt0UbcOEa-XfjkAUfwn6MTFlbKMG1R1p3bSBak6PJdHaPms7CZXRWaOvh6vscRq-L-Xr2GK-eHpazySrOWXh1LGWS6CTMKQPJdA4YZ4IRQTikAIIJxosci0xuNpRuMpqkGmu2FVKwIku3GR1GN4feuqk-OvCtKo3PwYZPQNV5RTLKQyElJETJIZo3lfcNFKpuTKmbvSJY9UJVEKqCUNULVb3QwIwPzKexsP8fUMvnl2S6wITRHo4PcB_bVV3jgok_l93-kl_O133rjx31tqBf-zaZHw</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Kasmi, Reda</creator><creator>Mokrani, Karim</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201606</creationdate><title>Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule</title><author>Kasmi, Reda ; Mokrani, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4015-9922a2c4074e94ace008641615e7ee64645fc0689bb33b8327a0a4d6964f87d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ABCD features</topic><topic>Algorithms</topic><topic>Asymmetry</topic><topic>automatic ABCD rule</topic><topic>automatic ABCD scoring</topic><topic>Automation</topic><topic>benign skin lesions</topic><topic>biomedical optical imaging</topic><topic>cancer</topic><topic>Classification</topic><topic>Colour</topic><topic>colour asymmetry</topic><topic>Construction</topic><topic>dermoscopic images</topic><topic>dermoscopic structures</topic><topic>dermoscopy</topic><topic>feature extraction</topic><topic>Gabor filters</topic><topic>geodesic active contours</topic><topic>image classification</topic><topic>lesion boundaries</topic><topic>Lesions</topic><topic>malignant melanoma classification</topic><topic>medical image processing</topic><topic>melanoma detection</topic><topic>Scoring</topic><topic>scoring method</topic><topic>skin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasmi, Reda</creatorcontrib><creatorcontrib>Mokrani, Karim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kasmi, Reda</au><au>Mokrani, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule</atitle><jtitle>IET image processing</jtitle><date>2016-06</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>448</spage><epage>455</epage><pages>448-455</pages><issn>1751-9659</issn><issn>1751-9667</issn><eissn>1751-9667</eissn><abstract>The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions from melanoma could enable earlier detection of melanoma. In this study, automatic ABCD scoring of dermoscopy lesions is implemented. Pre-processing enables automatic detection of hair using Gabor filters and lesion boundaries using geodesic active contours. Algorithms are implemented to extract the characteristics of ABCD attributes. Methods used here combine existing methods with novel methods to detect colour asymmetry and dermoscopic structures. To classify lesions as melanoma or benign nevus, the total dermoscopy score is calculated. The experimental results, using 200 dermoscopic images, where 80 are malignant melanomas and 120 benign lesions, show that the algorithm achieves 91.25% sensitivity of 91.25 and 95.83% specificity. This is comparable to the 92.8% sensitivity and 90.3% specificity reported for human implementation of the ABCD rule. The experimental results show that the extracted features can be used to build a promising classifier for melanoma detection.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-ipr.2015.0385</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-9659 |
ispartof | IET image processing, 2016-06, Vol.10 (6), p.448-455 |
issn | 1751-9659 1751-9667 1751-9667 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835641311 |
source | Wiley Online Library Open Access |
subjects | ABCD features Algorithms Asymmetry automatic ABCD rule automatic ABCD scoring Automation benign skin lesions biomedical optical imaging cancer Classification Colour colour asymmetry Construction dermoscopic images dermoscopic structures dermoscopy feature extraction Gabor filters geodesic active contours image classification lesion boundaries Lesions malignant melanoma classification medical image processing melanoma detection Scoring scoring method skin |
title | Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20malignant%20melanoma%20and%20benign%20skin%20lesions:%20implementation%20of%20automatic%20ABCD%20rule&rft.jtitle=IET%20image%20processing&rft.au=Kasmi,%20Reda&rft.date=2016-06&rft.volume=10&rft.issue=6&rft.spage=448&rft.epage=455&rft.pages=448-455&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/iet-ipr.2015.0385&rft_dat=%3Cproquest_24P%3E1835641311%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835641311&rft_id=info:pmid/&rfr_iscdi=true |