Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule

The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing 2016-06, Vol.10 (6), p.448-455
Hauptverfasser: Kasmi, Reda, Mokrani, Karim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 6
container_start_page 448
container_title IET image processing
container_volume 10
creator Kasmi, Reda
Mokrani, Karim
description The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions from melanoma could enable earlier detection of melanoma. In this study, automatic ABCD scoring of dermoscopy lesions is implemented. Pre-processing enables automatic detection of hair using Gabor filters and lesion boundaries using geodesic active contours. Algorithms are implemented to extract the characteristics of ABCD attributes. Methods used here combine existing methods with novel methods to detect colour asymmetry and dermoscopic structures. To classify lesions as melanoma or benign nevus, the total dermoscopy score is calculated. The experimental results, using 200 dermoscopic images, where 80 are malignant melanomas and 120 benign lesions, show that the algorithm achieves 91.25% sensitivity of 91.25 and 95.83% specificity. This is comparable to the 92.8% sensitivity and 90.3% specificity reported for human implementation of the ABCD rule. The experimental results show that the extracted features can be used to build a promising classifier for melanoma detection.
doi_str_mv 10.1049/iet-ipr.2015.0385
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835641311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835641311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4015-9922a2c4074e94ace008641615e7ee64645fc0689bb33b8327a0a4d6964f87d83</originalsourceid><addsrcrecordid>eNqFkE9LwzAYh4soOKcfwFuOeuhMmj9tdtvmpoOBIvMcsu6tZKZpbVpk396UyfAgespL-D2_N3mi6JrgEcFM3hloY1M3owQTPsI04yfRgKScxFKI9PQ4c3keXXi_w5hLnPFBlM-s9t4UJtetqRyqClRqa96cdi0qwWpXlRppt0UbcOEa-XfjkAUfwn6MTFlbKMG1R1p3bSBak6PJdHaPms7CZXRWaOvh6vscRq-L-Xr2GK-eHpazySrOWXh1LGWS6CTMKQPJdA4YZ4IRQTikAIIJxosci0xuNpRuMpqkGmu2FVKwIku3GR1GN4feuqk-OvCtKo3PwYZPQNV5RTLKQyElJETJIZo3lfcNFKpuTKmbvSJY9UJVEKqCUNULVb3QwIwPzKexsP8fUMvnl2S6wITRHo4PcB_bVV3jgok_l93-kl_O133rjx31tqBf-zaZHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835641311</pqid></control><display><type>article</type><title>Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule</title><source>Wiley Online Library Open Access</source><creator>Kasmi, Reda ; Mokrani, Karim</creator><creatorcontrib>Kasmi, Reda ; Mokrani, Karim</creatorcontrib><description>The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions from melanoma could enable earlier detection of melanoma. In this study, automatic ABCD scoring of dermoscopy lesions is implemented. Pre-processing enables automatic detection of hair using Gabor filters and lesion boundaries using geodesic active contours. Algorithms are implemented to extract the characteristics of ABCD attributes. Methods used here combine existing methods with novel methods to detect colour asymmetry and dermoscopic structures. To classify lesions as melanoma or benign nevus, the total dermoscopy score is calculated. The experimental results, using 200 dermoscopic images, where 80 are malignant melanomas and 120 benign lesions, show that the algorithm achieves 91.25% sensitivity of 91.25 and 95.83% specificity. This is comparable to the 92.8% sensitivity and 90.3% specificity reported for human implementation of the ABCD rule. The experimental results show that the extracted features can be used to build a promising classifier for melanoma detection.</description><identifier>ISSN: 1751-9659</identifier><identifier>ISSN: 1751-9667</identifier><identifier>EISSN: 1751-9667</identifier><identifier>DOI: 10.1049/iet-ipr.2015.0385</identifier><language>eng</language><publisher>The Institution of Engineering and Technology</publisher><subject>ABCD features ; Algorithms ; Asymmetry ; automatic ABCD rule ; automatic ABCD scoring ; Automation ; benign skin lesions ; biomedical optical imaging ; cancer ; Classification ; Colour ; colour asymmetry ; Construction ; dermoscopic images ; dermoscopic structures ; dermoscopy ; feature extraction ; Gabor filters ; geodesic active contours ; image classification ; lesion boundaries ; Lesions ; malignant melanoma classification ; medical image processing ; melanoma detection ; Scoring ; scoring method ; skin</subject><ispartof>IET image processing, 2016-06, Vol.10 (6), p.448-455</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2021 The Authors. IET Image Processing published by John Wiley &amp; Sons, Ltd. on behalf of The Institution of Engineering and Technology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4015-9922a2c4074e94ace008641615e7ee64645fc0689bb33b8327a0a4d6964f87d83</citedby><cites>FETCH-LOGICAL-c4015-9922a2c4074e94ace008641615e7ee64645fc0689bb33b8327a0a4d6964f87d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-ipr.2015.0385$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-ipr.2015.0385$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-ipr.2015.0385$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Kasmi, Reda</creatorcontrib><creatorcontrib>Mokrani, Karim</creatorcontrib><title>Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule</title><title>IET image processing</title><description>The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions from melanoma could enable earlier detection of melanoma. In this study, automatic ABCD scoring of dermoscopy lesions is implemented. Pre-processing enables automatic detection of hair using Gabor filters and lesion boundaries using geodesic active contours. Algorithms are implemented to extract the characteristics of ABCD attributes. Methods used here combine existing methods with novel methods to detect colour asymmetry and dermoscopic structures. To classify lesions as melanoma or benign nevus, the total dermoscopy score is calculated. The experimental results, using 200 dermoscopic images, where 80 are malignant melanomas and 120 benign lesions, show that the algorithm achieves 91.25% sensitivity of 91.25 and 95.83% specificity. This is comparable to the 92.8% sensitivity and 90.3% specificity reported for human implementation of the ABCD rule. The experimental results show that the extracted features can be used to build a promising classifier for melanoma detection.</description><subject>ABCD features</subject><subject>Algorithms</subject><subject>Asymmetry</subject><subject>automatic ABCD rule</subject><subject>automatic ABCD scoring</subject><subject>Automation</subject><subject>benign skin lesions</subject><subject>biomedical optical imaging</subject><subject>cancer</subject><subject>Classification</subject><subject>Colour</subject><subject>colour asymmetry</subject><subject>Construction</subject><subject>dermoscopic images</subject><subject>dermoscopic structures</subject><subject>dermoscopy</subject><subject>feature extraction</subject><subject>Gabor filters</subject><subject>geodesic active contours</subject><subject>image classification</subject><subject>lesion boundaries</subject><subject>Lesions</subject><subject>malignant melanoma classification</subject><subject>medical image processing</subject><subject>melanoma detection</subject><subject>Scoring</subject><subject>scoring method</subject><subject>skin</subject><issn>1751-9659</issn><issn>1751-9667</issn><issn>1751-9667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LwzAYh4soOKcfwFuOeuhMmj9tdtvmpoOBIvMcsu6tZKZpbVpk396UyfAgespL-D2_N3mi6JrgEcFM3hloY1M3owQTPsI04yfRgKScxFKI9PQ4c3keXXi_w5hLnPFBlM-s9t4UJtetqRyqClRqa96cdi0qwWpXlRppt0UbcOEa-XfjkAUfwn6MTFlbKMG1R1p3bSBak6PJdHaPms7CZXRWaOvh6vscRq-L-Xr2GK-eHpazySrOWXh1LGWS6CTMKQPJdA4YZ4IRQTikAIIJxosci0xuNpRuMpqkGmu2FVKwIku3GR1GN4feuqk-OvCtKo3PwYZPQNV5RTLKQyElJETJIZo3lfcNFKpuTKmbvSJY9UJVEKqCUNULVb3QwIwPzKexsP8fUMvnl2S6wITRHo4PcB_bVV3jgok_l93-kl_O133rjx31tqBf-zaZHw</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Kasmi, Reda</creator><creator>Mokrani, Karim</creator><general>The Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201606</creationdate><title>Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule</title><author>Kasmi, Reda ; Mokrani, Karim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4015-9922a2c4074e94ace008641615e7ee64645fc0689bb33b8327a0a4d6964f87d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ABCD features</topic><topic>Algorithms</topic><topic>Asymmetry</topic><topic>automatic ABCD rule</topic><topic>automatic ABCD scoring</topic><topic>Automation</topic><topic>benign skin lesions</topic><topic>biomedical optical imaging</topic><topic>cancer</topic><topic>Classification</topic><topic>Colour</topic><topic>colour asymmetry</topic><topic>Construction</topic><topic>dermoscopic images</topic><topic>dermoscopic structures</topic><topic>dermoscopy</topic><topic>feature extraction</topic><topic>Gabor filters</topic><topic>geodesic active contours</topic><topic>image classification</topic><topic>lesion boundaries</topic><topic>Lesions</topic><topic>malignant melanoma classification</topic><topic>medical image processing</topic><topic>melanoma detection</topic><topic>Scoring</topic><topic>scoring method</topic><topic>skin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasmi, Reda</creatorcontrib><creatorcontrib>Mokrani, Karim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IET image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kasmi, Reda</au><au>Mokrani, Karim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule</atitle><jtitle>IET image processing</jtitle><date>2016-06</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>448</spage><epage>455</epage><pages>448-455</pages><issn>1751-9659</issn><issn>1751-9667</issn><eissn>1751-9667</eissn><abstract>The ABCD (asymmetry, border irregularity, colour and dermoscopic structure) rule of dermoscopy is a scoring method used by dermatologists to quantify dermoscopy findings and effectively separate melanoma from benign lesions. Automatic detection of the ABCD features and separation of benign lesions from melanoma could enable earlier detection of melanoma. In this study, automatic ABCD scoring of dermoscopy lesions is implemented. Pre-processing enables automatic detection of hair using Gabor filters and lesion boundaries using geodesic active contours. Algorithms are implemented to extract the characteristics of ABCD attributes. Methods used here combine existing methods with novel methods to detect colour asymmetry and dermoscopic structures. To classify lesions as melanoma or benign nevus, the total dermoscopy score is calculated. The experimental results, using 200 dermoscopic images, where 80 are malignant melanomas and 120 benign lesions, show that the algorithm achieves 91.25% sensitivity of 91.25 and 95.83% specificity. This is comparable to the 92.8% sensitivity and 90.3% specificity reported for human implementation of the ABCD rule. The experimental results show that the extracted features can be used to build a promising classifier for melanoma detection.</abstract><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-ipr.2015.0385</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-9659
ispartof IET image processing, 2016-06, Vol.10 (6), p.448-455
issn 1751-9659
1751-9667
1751-9667
language eng
recordid cdi_proquest_miscellaneous_1835641311
source Wiley Online Library Open Access
subjects ABCD features
Algorithms
Asymmetry
automatic ABCD rule
automatic ABCD scoring
Automation
benign skin lesions
biomedical optical imaging
cancer
Classification
Colour
colour asymmetry
Construction
dermoscopic images
dermoscopic structures
dermoscopy
feature extraction
Gabor filters
geodesic active contours
image classification
lesion boundaries
Lesions
malignant melanoma classification
medical image processing
melanoma detection
Scoring
scoring method
skin
title Classification of malignant melanoma and benign skin lesions: implementation of automatic ABCD rule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20malignant%20melanoma%20and%20benign%20skin%20lesions:%20implementation%20of%20automatic%20ABCD%20rule&rft.jtitle=IET%20image%20processing&rft.au=Kasmi,%20Reda&rft.date=2016-06&rft.volume=10&rft.issue=6&rft.spage=448&rft.epage=455&rft.pages=448-455&rft.issn=1751-9659&rft.eissn=1751-9667&rft_id=info:doi/10.1049/iet-ipr.2015.0385&rft_dat=%3Cproquest_24P%3E1835641311%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835641311&rft_id=info:pmid/&rfr_iscdi=true