Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach

This paper proposes a novel hybrid approach for feature selection in two different relevant problems for marine energy applications: significant wave height (Hm0) and wave energy flux (P) prediction. Specifically, a hybrid Grouping Genetic Algorithm – Extreme Learning Machine approach (GGA-ELM) is p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2016-11, Vol.97, p.380-389
Hauptverfasser: Cornejo-Bueno, L., Nieto-Borge, J.C., García-Díaz, P., Rodríguez, G., Salcedo-Sanz, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue
container_start_page 380
container_title Renewable energy
container_volume 97
creator Cornejo-Bueno, L.
Nieto-Borge, J.C.
García-Díaz, P.
Rodríguez, G.
Salcedo-Sanz, S.
description This paper proposes a novel hybrid approach for feature selection in two different relevant problems for marine energy applications: significant wave height (Hm0) and wave energy flux (P) prediction. Specifically, a hybrid Grouping Genetic Algorithm – Extreme Learning Machine approach (GGA-ELM) is proposed, in such a way that the GGA searches for several subsets of features, and the ELM provides the fitness of the algorithm, by means of its accuracy on Hm0 or P prediction. Since the GGA was specifically created for problems involving a number of groups, the proposed algorithm may be used to evolve different groups of features in parallel, which may improve the performance of the predictions obtained. After the feature selection process with the GGA-ELM, the final results are given by an ELM and also by a Support Vector Machine, both working on the best GGA groups obtained. The performance of the proposed system has been tested in a real problem of Hm0 and P prediction at the Western coast of the USA, obtaining good results. •A problem of Significant Wave Height prediction is tackled.•A hybrid GGA-ELM algorithm is proposed.•The GGA-ELM approach searches for the best set of features in the problem.•Experiments in real data of buoys located at the Western coast of the USA are carried out.
doi_str_mv 10.1016/j.renene.2016.05.094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835638548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148116305110</els_id><sourcerecordid>1811890884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-40069a2565589d0645b927e0e0c4836312a59c1f5ce6e4452d57868af02a5ca43</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxq0KpC6FN-jBRy4J48T22hyQqqotSFtxAM6W60yyXmWdYHv759Z3QLwgT4KjhSvIh7H1ffOzZj5CzhnUDJh8t6sjhnLqprxqEDVofkJWTK11BVI1L8gKtISKccVOyauUdgBMqDVfkZ9f_BB8750NmT7Ye6Rb9MM2Uxs6WpBxeKL9eHikc8TOu-ynQPsp0r2NPuBfh53nsSAWNb2nF3SI02H2YaBDMWTvqB2HKfq83dNfzz_o1WOOuEe6QRvDYru1brvgCidO5f6avOztmPDNn3pGvl1ffb38WG0-33y6vNhUjiudKw4gtW2EFELpDiQXd7pZIyAUvZUta6zQjvXCoUTORdOJtZLK9lAEZ3l7Rt4eueXb7wdM2ex9cjiONuB0SIapVshWiUL7v5UxpUGphcqPVhenlCL2Zo6-LOzJMDBLYGZnjoGZJTADwpTAStuHYxuWie89RpOcx-DK3iO6bLrJ_xvwG-kEo1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811890884</pqid></control><display><type>article</type><title>Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Cornejo-Bueno, L. ; Nieto-Borge, J.C. ; García-Díaz, P. ; Rodríguez, G. ; Salcedo-Sanz, S.</creator><creatorcontrib>Cornejo-Bueno, L. ; Nieto-Borge, J.C. ; García-Díaz, P. ; Rodríguez, G. ; Salcedo-Sanz, S.</creatorcontrib><description>This paper proposes a novel hybrid approach for feature selection in two different relevant problems for marine energy applications: significant wave height (Hm0) and wave energy flux (P) prediction. Specifically, a hybrid Grouping Genetic Algorithm – Extreme Learning Machine approach (GGA-ELM) is proposed, in such a way that the GGA searches for several subsets of features, and the ELM provides the fitness of the algorithm, by means of its accuracy on Hm0 or P prediction. Since the GGA was specifically created for problems involving a number of groups, the proposed algorithm may be used to evolve different groups of features in parallel, which may improve the performance of the predictions obtained. After the feature selection process with the GGA-ELM, the final results are given by an ELM and also by a Support Vector Machine, both working on the best GGA groups obtained. The performance of the proposed system has been tested in a real problem of Hm0 and P prediction at the Western coast of the USA, obtaining good results. •A problem of Significant Wave Height prediction is tackled.•A hybrid GGA-ELM algorithm is proposed.•The GGA-ELM approach searches for the best set of features in the problem.•Experiments in real data of buoys located at the Western coast of the USA are carried out.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2016.05.094</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Coastal environments ; Evolution ; Extreme Learning Machines ; Fitness ; Flux ; Genetic algorithms ; Grouping genetic algorithm (GGA) ; Marine energy ; Neural networks ; Significant wave height ; Support vector machines ; Wave energy flux ; Wave power</subject><ispartof>Renewable energy, 2016-11, Vol.97, p.380-389</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-40069a2565589d0645b927e0e0c4836312a59c1f5ce6e4452d57868af02a5ca43</citedby><cites>FETCH-LOGICAL-c489t-40069a2565589d0645b927e0e0c4836312a59c1f5ce6e4452d57868af02a5ca43</cites><orcidid>0000-0002-4126-8041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.renene.2016.05.094$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Cornejo-Bueno, L.</creatorcontrib><creatorcontrib>Nieto-Borge, J.C.</creatorcontrib><creatorcontrib>García-Díaz, P.</creatorcontrib><creatorcontrib>Rodríguez, G.</creatorcontrib><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><title>Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach</title><title>Renewable energy</title><description>This paper proposes a novel hybrid approach for feature selection in two different relevant problems for marine energy applications: significant wave height (Hm0) and wave energy flux (P) prediction. Specifically, a hybrid Grouping Genetic Algorithm – Extreme Learning Machine approach (GGA-ELM) is proposed, in such a way that the GGA searches for several subsets of features, and the ELM provides the fitness of the algorithm, by means of its accuracy on Hm0 or P prediction. Since the GGA was specifically created for problems involving a number of groups, the proposed algorithm may be used to evolve different groups of features in parallel, which may improve the performance of the predictions obtained. After the feature selection process with the GGA-ELM, the final results are given by an ELM and also by a Support Vector Machine, both working on the best GGA groups obtained. The performance of the proposed system has been tested in a real problem of Hm0 and P prediction at the Western coast of the USA, obtaining good results. •A problem of Significant Wave Height prediction is tackled.•A hybrid GGA-ELM algorithm is proposed.•The GGA-ELM approach searches for the best set of features in the problem.•Experiments in real data of buoys located at the Western coast of the USA are carried out.</description><subject>Algorithms</subject><subject>Coastal environments</subject><subject>Evolution</subject><subject>Extreme Learning Machines</subject><subject>Fitness</subject><subject>Flux</subject><subject>Genetic algorithms</subject><subject>Grouping genetic algorithm (GGA)</subject><subject>Marine energy</subject><subject>Neural networks</subject><subject>Significant wave height</subject><subject>Support vector machines</subject><subject>Wave energy flux</subject><subject>Wave power</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxq0KpC6FN-jBRy4J48T22hyQqqotSFtxAM6W60yyXmWdYHv759Z3QLwgT4KjhSvIh7H1ffOzZj5CzhnUDJh8t6sjhnLqprxqEDVofkJWTK11BVI1L8gKtISKccVOyauUdgBMqDVfkZ9f_BB8750NmT7Ye6Rb9MM2Uxs6WpBxeKL9eHikc8TOu-ynQPsp0r2NPuBfh53nsSAWNb2nF3SI02H2YaBDMWTvqB2HKfq83dNfzz_o1WOOuEe6QRvDYru1brvgCidO5f6avOztmPDNn3pGvl1ffb38WG0-33y6vNhUjiudKw4gtW2EFELpDiQXd7pZIyAUvZUta6zQjvXCoUTORdOJtZLK9lAEZ3l7Rt4eueXb7wdM2ex9cjiONuB0SIapVshWiUL7v5UxpUGphcqPVhenlCL2Zo6-LOzJMDBLYGZnjoGZJTADwpTAStuHYxuWie89RpOcx-DK3iO6bLrJ_xvwG-kEo1c</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Cornejo-Bueno, L.</creator><creator>Nieto-Borge, J.C.</creator><creator>García-Díaz, P.</creator><creator>Rodríguez, G.</creator><creator>Salcedo-Sanz, S.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4126-8041</orcidid></search><sort><creationdate>201611</creationdate><title>Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach</title><author>Cornejo-Bueno, L. ; Nieto-Borge, J.C. ; García-Díaz, P. ; Rodríguez, G. ; Salcedo-Sanz, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-40069a2565589d0645b927e0e0c4836312a59c1f5ce6e4452d57868af02a5ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Coastal environments</topic><topic>Evolution</topic><topic>Extreme Learning Machines</topic><topic>Fitness</topic><topic>Flux</topic><topic>Genetic algorithms</topic><topic>Grouping genetic algorithm (GGA)</topic><topic>Marine energy</topic><topic>Neural networks</topic><topic>Significant wave height</topic><topic>Support vector machines</topic><topic>Wave energy flux</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornejo-Bueno, L.</creatorcontrib><creatorcontrib>Nieto-Borge, J.C.</creatorcontrib><creatorcontrib>García-Díaz, P.</creatorcontrib><creatorcontrib>Rodríguez, G.</creatorcontrib><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornejo-Bueno, L.</au><au>Nieto-Borge, J.C.</au><au>García-Díaz, P.</au><au>Rodríguez, G.</au><au>Salcedo-Sanz, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach</atitle><jtitle>Renewable energy</jtitle><date>2016-11</date><risdate>2016</risdate><volume>97</volume><spage>380</spage><epage>389</epage><pages>380-389</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>This paper proposes a novel hybrid approach for feature selection in two different relevant problems for marine energy applications: significant wave height (Hm0) and wave energy flux (P) prediction. Specifically, a hybrid Grouping Genetic Algorithm – Extreme Learning Machine approach (GGA-ELM) is proposed, in such a way that the GGA searches for several subsets of features, and the ELM provides the fitness of the algorithm, by means of its accuracy on Hm0 or P prediction. Since the GGA was specifically created for problems involving a number of groups, the proposed algorithm may be used to evolve different groups of features in parallel, which may improve the performance of the predictions obtained. After the feature selection process with the GGA-ELM, the final results are given by an ELM and also by a Support Vector Machine, both working on the best GGA groups obtained. The performance of the proposed system has been tested in a real problem of Hm0 and P prediction at the Western coast of the USA, obtaining good results. •A problem of Significant Wave Height prediction is tackled.•A hybrid GGA-ELM algorithm is proposed.•The GGA-ELM approach searches for the best set of features in the problem.•Experiments in real data of buoys located at the Western coast of the USA are carried out.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2016.05.094</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4126-8041</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2016-11, Vol.97, p.380-389
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_1835638548
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Algorithms
Coastal environments
Evolution
Extreme Learning Machines
Fitness
Flux
Genetic algorithms
Grouping genetic algorithm (GGA)
Marine energy
Neural networks
Significant wave height
Support vector machines
Wave energy flux
Wave power
title Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Significant%20wave%20height%20and%20energy%20flux%20prediction%20for%20marine%20energy%20applications:%20A%20grouping%20genetic%20algorithm%20%E2%80%93%20Extreme%20Learning%20Machine%20approach&rft.jtitle=Renewable%20energy&rft.au=Cornejo-Bueno,%20L.&rft.date=2016-11&rft.volume=97&rft.spage=380&rft.epage=389&rft.pages=380-389&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2016.05.094&rft_dat=%3Cproquest_cross%3E1811890884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811890884&rft_id=info:pmid/&rft_els_id=S0960148116305110&rfr_iscdi=true