Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design
This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium...
Gespeichert in:
Veröffentlicht in: | Engineering analysis with boundary elements 2016-10, Vol.71, p.92-100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | |
container_start_page | 92 |
container_title | Engineering analysis with boundary elements |
container_volume | 71 |
creator | Ho, Phuc L.H. Le, Canh V. Tran-Cong, T. |
description | This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium equations and boundary conditions are imposed directly at the collocation points. In this paper it has been shown that direct nodal integration of the iRBF approximation can prevent volumetric locking in the kinematic formulation, and instability problems can also be avoided. Moreover, with the use of the collocation method in the static problem, equilibrium equations and yield conditions only need to be enforced at the nodes, leading to the reduction in computational cost. The mean value of the approximated upper and lower bound is found to be in excellent agreement with the available analytical solution, and can be considered as the actual collapse load multiplier for most practical engineering problems, for which exact solution is unknown. |
doi_str_mv | 10.1016/j.enganabound.2016.07.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835635957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799716301618</els_id><sourcerecordid>1835635957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-922d9ef478f5a8bdbef20ad54130caabfd69ae55df17ff44a6dbceba1eff03cc3</originalsourceid><addsrcrecordid>eNqNUMlOwzAQtRBIlOUfzI1Lgt3EcX1EZZUqcQGJmzWxx8VV4hQ7QeLvcVQOHDnN8hbNPEKuOCs5483NrsSwhQDtMAVbLvOqZLJknB2RBV_JquBKvh-TBVNCFFIpeUrOUtoxxivGmgVJdz7tOzDYYxgpBEvxc_Kdb6Ofetpj-ihcRKRuiP3UweiHQFtIaGlufBhxG2HMUwTroZshn6ibgpmZaZZRO2Xg22NnqcXkt-GCnDjoEl7-1nPy9nD_un4qNi-Pz-vbTWEqUY-FWi6tQlfLlROwam2LbsnAijqfbgBaZxsFKIR1XDpX19DY1mALHJ1jlTHVObk--O7j8DlhGnXvk8Gug4DDlDRfVaKphBIyU9WBauKQUkSn99H3EL81Z3oOWu_0n6D1HLRmUuegs3Z90GL-5ctj1Ml4DAatj2hGbQf_D5cfa2iR2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835635957</pqid></control><display><type>article</type><title>Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design</title><source>Elsevier ScienceDirect Journals</source><creator>Ho, Phuc L.H. ; Le, Canh V. ; Tran-Cong, T.</creator><creatorcontrib>Ho, Phuc L.H. ; Le, Canh V. ; Tran-Cong, T.</creatorcontrib><description>This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium equations and boundary conditions are imposed directly at the collocation points. In this paper it has been shown that direct nodal integration of the iRBF approximation can prevent volumetric locking in the kinematic formulation, and instability problems can also be avoided. Moreover, with the use of the collocation method in the static problem, equilibrium equations and yield conditions only need to be enforced at the nodes, leading to the reduction in computational cost. The mean value of the approximated upper and lower bound is found to be in excellent agreement with the available analytical solution, and can be considered as the actual collapse load multiplier for most practical engineering problems, for which exact solution is unknown.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2016.07.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Design analysis ; Displacement ; Equilibrium equations ; Formulations ; Integrated radial basis function ; Limit analysis ; Mathematical analysis ; Mesh-free method ; Meshless methods ; Radial basis function ; Second order cone programming ; Yield design</subject><ispartof>Engineering analysis with boundary elements, 2016-10, Vol.71, p.92-100</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-922d9ef478f5a8bdbef20ad54130caabfd69ae55df17ff44a6dbceba1eff03cc3</citedby><cites>FETCH-LOGICAL-c354t-922d9ef478f5a8bdbef20ad54130caabfd69ae55df17ff44a6dbceba1eff03cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0955799716301618$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ho, Phuc L.H.</creatorcontrib><creatorcontrib>Le, Canh V.</creatorcontrib><creatorcontrib>Tran-Cong, T.</creatorcontrib><title>Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design</title><title>Engineering analysis with boundary elements</title><description>This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium equations and boundary conditions are imposed directly at the collocation points. In this paper it has been shown that direct nodal integration of the iRBF approximation can prevent volumetric locking in the kinematic formulation, and instability problems can also be avoided. Moreover, with the use of the collocation method in the static problem, equilibrium equations and yield conditions only need to be enforced at the nodes, leading to the reduction in computational cost. The mean value of the approximated upper and lower bound is found to be in excellent agreement with the available analytical solution, and can be considered as the actual collapse load multiplier for most practical engineering problems, for which exact solution is unknown.</description><subject>Approximation</subject><subject>Design analysis</subject><subject>Displacement</subject><subject>Equilibrium equations</subject><subject>Formulations</subject><subject>Integrated radial basis function</subject><subject>Limit analysis</subject><subject>Mathematical analysis</subject><subject>Mesh-free method</subject><subject>Meshless methods</subject><subject>Radial basis function</subject><subject>Second order cone programming</subject><subject>Yield design</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOwzAQtRBIlOUfzI1Lgt3EcX1EZZUqcQGJmzWxx8VV4hQ7QeLvcVQOHDnN8hbNPEKuOCs5483NrsSwhQDtMAVbLvOqZLJknB2RBV_JquBKvh-TBVNCFFIpeUrOUtoxxivGmgVJdz7tOzDYYxgpBEvxc_Kdb6Ofetpj-ihcRKRuiP3UweiHQFtIaGlufBhxG2HMUwTroZshn6ibgpmZaZZRO2Xg22NnqcXkt-GCnDjoEl7-1nPy9nD_un4qNi-Pz-vbTWEqUY-FWi6tQlfLlROwam2LbsnAijqfbgBaZxsFKIR1XDpX19DY1mALHJ1jlTHVObk--O7j8DlhGnXvk8Gug4DDlDRfVaKphBIyU9WBauKQUkSn99H3EL81Z3oOWu_0n6D1HLRmUuegs3Z90GL-5ctj1Ml4DAatj2hGbQf_D5cfa2iR2A</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Ho, Phuc L.H.</creator><creator>Le, Canh V.</creator><creator>Tran-Cong, T.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201610</creationdate><title>Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design</title><author>Ho, Phuc L.H. ; Le, Canh V. ; Tran-Cong, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-922d9ef478f5a8bdbef20ad54130caabfd69ae55df17ff44a6dbceba1eff03cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Design analysis</topic><topic>Displacement</topic><topic>Equilibrium equations</topic><topic>Formulations</topic><topic>Integrated radial basis function</topic><topic>Limit analysis</topic><topic>Mathematical analysis</topic><topic>Mesh-free method</topic><topic>Meshless methods</topic><topic>Radial basis function</topic><topic>Second order cone programming</topic><topic>Yield design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Phuc L.H.</creatorcontrib><creatorcontrib>Le, Canh V.</creatorcontrib><creatorcontrib>Tran-Cong, T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Phuc L.H.</au><au>Le, Canh V.</au><au>Tran-Cong, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2016-10</date><risdate>2016</risdate><volume>71</volume><spage>92</spage><epage>100</epage><pages>92-100</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium equations and boundary conditions are imposed directly at the collocation points. In this paper it has been shown that direct nodal integration of the iRBF approximation can prevent volumetric locking in the kinematic formulation, and instability problems can also be avoided. Moreover, with the use of the collocation method in the static problem, equilibrium equations and yield conditions only need to be enforced at the nodes, leading to the reduction in computational cost. The mean value of the approximated upper and lower bound is found to be in excellent agreement with the available analytical solution, and can be considered as the actual collapse load multiplier for most practical engineering problems, for which exact solution is unknown.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2016.07.010</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-7997 |
ispartof | Engineering analysis with boundary elements, 2016-10, Vol.71, p.92-100 |
issn | 0955-7997 1873-197X |
language | eng |
recordid | cdi_proquest_miscellaneous_1835635957 |
source | Elsevier ScienceDirect Journals |
subjects | Approximation Design analysis Displacement Equilibrium equations Formulations Integrated radial basis function Limit analysis Mathematical analysis Mesh-free method Meshless methods Radial basis function Second order cone programming Yield design |
title | Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Displacement%20and%20equilibrium%20mesh-free%20formulation%20based%20on%20integrated%20radial%20basis%20functions%20for%20dual%20yield%20design&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Ho,%20Phuc%20L.H.&rft.date=2016-10&rft.volume=71&rft.spage=92&rft.epage=100&rft.pages=92-100&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2016.07.010&rft_dat=%3Cproquest_cross%3E1835635957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835635957&rft_id=info:pmid/&rft_els_id=S0955799716301618&rfr_iscdi=true |