Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design

This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 2016-10, Vol.71, p.92-100
Hauptverfasser: Ho, Phuc L.H., Le, Canh V., Tran-Cong, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100
container_issue
container_start_page 92
container_title Engineering analysis with boundary elements
container_volume 71
creator Ho, Phuc L.H.
Le, Canh V.
Tran-Cong, T.
description This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium equations and boundary conditions are imposed directly at the collocation points. In this paper it has been shown that direct nodal integration of the iRBF approximation can prevent volumetric locking in the kinematic formulation, and instability problems can also be avoided. Moreover, with the use of the collocation method in the static problem, equilibrium equations and yield conditions only need to be enforced at the nodes, leading to the reduction in computational cost. The mean value of the approximated upper and lower bound is found to be in excellent agreement with the available analytical solution, and can be considered as the actual collapse load multiplier for most practical engineering problems, for which exact solution is unknown.
doi_str_mv 10.1016/j.enganabound.2016.07.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835635957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799716301618</els_id><sourcerecordid>1835635957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-922d9ef478f5a8bdbef20ad54130caabfd69ae55df17ff44a6dbceba1eff03cc3</originalsourceid><addsrcrecordid>eNqNUMlOwzAQtRBIlOUfzI1Lgt3EcX1EZZUqcQGJmzWxx8VV4hQ7QeLvcVQOHDnN8hbNPEKuOCs5483NrsSwhQDtMAVbLvOqZLJknB2RBV_JquBKvh-TBVNCFFIpeUrOUtoxxivGmgVJdz7tOzDYYxgpBEvxc_Kdb6Ofetpj-ihcRKRuiP3UweiHQFtIaGlufBhxG2HMUwTroZshn6ibgpmZaZZRO2Xg22NnqcXkt-GCnDjoEl7-1nPy9nD_un4qNi-Pz-vbTWEqUY-FWi6tQlfLlROwam2LbsnAijqfbgBaZxsFKIR1XDpX19DY1mALHJ1jlTHVObk--O7j8DlhGnXvk8Gug4DDlDRfVaKphBIyU9WBauKQUkSn99H3EL81Z3oOWu_0n6D1HLRmUuegs3Z90GL-5ctj1Ml4DAatj2hGbQf_D5cfa2iR2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835635957</pqid></control><display><type>article</type><title>Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design</title><source>Elsevier ScienceDirect Journals</source><creator>Ho, Phuc L.H. ; Le, Canh V. ; Tran-Cong, T.</creator><creatorcontrib>Ho, Phuc L.H. ; Le, Canh V. ; Tran-Cong, T.</creatorcontrib><description>This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium equations and boundary conditions are imposed directly at the collocation points. In this paper it has been shown that direct nodal integration of the iRBF approximation can prevent volumetric locking in the kinematic formulation, and instability problems can also be avoided. Moreover, with the use of the collocation method in the static problem, equilibrium equations and yield conditions only need to be enforced at the nodes, leading to the reduction in computational cost. The mean value of the approximated upper and lower bound is found to be in excellent agreement with the available analytical solution, and can be considered as the actual collapse load multiplier for most practical engineering problems, for which exact solution is unknown.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2016.07.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Design analysis ; Displacement ; Equilibrium equations ; Formulations ; Integrated radial basis function ; Limit analysis ; Mathematical analysis ; Mesh-free method ; Meshless methods ; Radial basis function ; Second order cone programming ; Yield design</subject><ispartof>Engineering analysis with boundary elements, 2016-10, Vol.71, p.92-100</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-922d9ef478f5a8bdbef20ad54130caabfd69ae55df17ff44a6dbceba1eff03cc3</citedby><cites>FETCH-LOGICAL-c354t-922d9ef478f5a8bdbef20ad54130caabfd69ae55df17ff44a6dbceba1eff03cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0955799716301618$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Ho, Phuc L.H.</creatorcontrib><creatorcontrib>Le, Canh V.</creatorcontrib><creatorcontrib>Tran-Cong, T.</creatorcontrib><title>Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design</title><title>Engineering analysis with boundary elements</title><description>This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium equations and boundary conditions are imposed directly at the collocation points. In this paper it has been shown that direct nodal integration of the iRBF approximation can prevent volumetric locking in the kinematic formulation, and instability problems can also be avoided. Moreover, with the use of the collocation method in the static problem, equilibrium equations and yield conditions only need to be enforced at the nodes, leading to the reduction in computational cost. The mean value of the approximated upper and lower bound is found to be in excellent agreement with the available analytical solution, and can be considered as the actual collapse load multiplier for most practical engineering problems, for which exact solution is unknown.</description><subject>Approximation</subject><subject>Design analysis</subject><subject>Displacement</subject><subject>Equilibrium equations</subject><subject>Formulations</subject><subject>Integrated radial basis function</subject><subject>Limit analysis</subject><subject>Mathematical analysis</subject><subject>Mesh-free method</subject><subject>Meshless methods</subject><subject>Radial basis function</subject><subject>Second order cone programming</subject><subject>Yield design</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUMlOwzAQtRBIlOUfzI1Lgt3EcX1EZZUqcQGJmzWxx8VV4hQ7QeLvcVQOHDnN8hbNPEKuOCs5483NrsSwhQDtMAVbLvOqZLJknB2RBV_JquBKvh-TBVNCFFIpeUrOUtoxxivGmgVJdz7tOzDYYxgpBEvxc_Kdb6Ofetpj-ihcRKRuiP3UweiHQFtIaGlufBhxG2HMUwTroZshn6ibgpmZaZZRO2Xg22NnqcXkt-GCnDjoEl7-1nPy9nD_un4qNi-Pz-vbTWEqUY-FWi6tQlfLlROwam2LbsnAijqfbgBaZxsFKIR1XDpX19DY1mALHJ1jlTHVObk--O7j8DlhGnXvk8Gug4DDlDRfVaKphBIyU9WBauKQUkSn99H3EL81Z3oOWu_0n6D1HLRmUuegs3Z90GL-5ctj1Ml4DAatj2hGbQf_D5cfa2iR2A</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Ho, Phuc L.H.</creator><creator>Le, Canh V.</creator><creator>Tran-Cong, T.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201610</creationdate><title>Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design</title><author>Ho, Phuc L.H. ; Le, Canh V. ; Tran-Cong, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-922d9ef478f5a8bdbef20ad54130caabfd69ae55df17ff44a6dbceba1eff03cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Design analysis</topic><topic>Displacement</topic><topic>Equilibrium equations</topic><topic>Formulations</topic><topic>Integrated radial basis function</topic><topic>Limit analysis</topic><topic>Mathematical analysis</topic><topic>Mesh-free method</topic><topic>Meshless methods</topic><topic>Radial basis function</topic><topic>Second order cone programming</topic><topic>Yield design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Phuc L.H.</creatorcontrib><creatorcontrib>Le, Canh V.</creatorcontrib><creatorcontrib>Tran-Cong, T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Phuc L.H.</au><au>Le, Canh V.</au><au>Tran-Cong, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2016-10</date><risdate>2016</risdate><volume>71</volume><spage>92</spage><epage>100</epage><pages>92-100</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions (iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium equations and boundary conditions are imposed directly at the collocation points. In this paper it has been shown that direct nodal integration of the iRBF approximation can prevent volumetric locking in the kinematic formulation, and instability problems can also be avoided. Moreover, with the use of the collocation method in the static problem, equilibrium equations and yield conditions only need to be enforced at the nodes, leading to the reduction in computational cost. The mean value of the approximated upper and lower bound is found to be in excellent agreement with the available analytical solution, and can be considered as the actual collapse load multiplier for most practical engineering problems, for which exact solution is unknown.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2016.07.010</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2016-10, Vol.71, p.92-100
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_1835635957
source Elsevier ScienceDirect Journals
subjects Approximation
Design analysis
Displacement
Equilibrium equations
Formulations
Integrated radial basis function
Limit analysis
Mathematical analysis
Mesh-free method
Meshless methods
Radial basis function
Second order cone programming
Yield design
title Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Displacement%20and%20equilibrium%20mesh-free%20formulation%20based%20on%20integrated%20radial%20basis%20functions%20for%20dual%20yield%20design&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Ho,%20Phuc%20L.H.&rft.date=2016-10&rft.volume=71&rft.spage=92&rft.epage=100&rft.pages=92-100&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2016.07.010&rft_dat=%3Cproquest_cross%3E1835635957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835635957&rft_id=info:pmid/&rft_els_id=S0955799716301618&rfr_iscdi=true