A new iterative scheme for numerical reckoning fixed points of total asymptotically nonexpansive mappings

In this paper, we propose a new iterative algorithm to approximate fixed points of total asymptotically nonexpansive mappings in CAT ( 0 ) spaces. We also provide two examples to illustrate the convergence behavior of the proposed algorithm and numerically compare the convergence of the proposed ite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fixed point theory and algorithms for sciences and engineering 2016-12, Vol.2016 (1), p.1-13, Article 83
Hauptverfasser: Pansuwan, Adoon, Sintunavarat, Wutiphol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title Fixed point theory and algorithms for sciences and engineering
container_volume 2016
creator Pansuwan, Adoon
Sintunavarat, Wutiphol
description In this paper, we propose a new iterative algorithm to approximate fixed points of total asymptotically nonexpansive mappings in CAT ( 0 ) spaces. We also provide two examples to illustrate the convergence behavior of the proposed algorithm and numerically compare the convergence of the proposed iteration scheme with the existing schemes.
doi_str_mv 10.1186/s13663-016-0573-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835633353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835633353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3079-a717ed7a546af0cc202f52d5cb3e38741144bf692d5696cbaebe063ecabde28a3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BL16qSdOm6XFZ_AcLXvQc0nS6Zm2TmrTqfntT6mERPM1j5vcew0PokpIbSgW_DZRxzhJCeULygiXlEVpQLoqECpoeH-hTdBbCjpC0zEm2QGaFLXxhM4BXg_kEHPQbdIAb57EdO_BGqxZ70O_OGrvFjfmGGvfO2CFg1-DBDfGuwr7ro5zgdo-ts_DdKxumwE71fXSGc3TSqDbAxe9cotf7u5f1Y7J5fnharzaJZqQoE1XQAupC5RlXDdE6JWmTp3WuKwZMFBmlWVY1vIwrXnJdKaiAcAZaVTWkQrElup5ze-8-RgiD7EzQ0LbKghuDpILlnDGWs4he_UF3bvQ2fhcpSoQQJM0iRWdKexeCh0b23nTK7yUlcipfzuXLWL6cypdl9KSzJ0TWbsEfJP9r-gGOsolS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810888024</pqid></control><display><type>article</type><title>A new iterative scheme for numerical reckoning fixed points of total asymptotically nonexpansive mappings</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Springer Nature OA Free Journals</source><creator>Pansuwan, Adoon ; Sintunavarat, Wutiphol</creator><creatorcontrib>Pansuwan, Adoon ; Sintunavarat, Wutiphol</creatorcontrib><description>In this paper, we propose a new iterative algorithm to approximate fixed points of total asymptotically nonexpansive mappings in CAT ( 0 ) spaces. We also provide two examples to illustrate the convergence behavior of the proposed algorithm and numerically compare the convergence of the proposed iteration scheme with the existing schemes.</description><identifier>ISSN: 1687-1812</identifier><identifier>EISSN: 1687-1812</identifier><identifier>EISSN: 2730-5422</identifier><identifier>DOI: 10.1186/s13663-016-0573-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analysis ; Applications of Mathematics ; Approximation ; Asymptotic properties ; Computation and Applications ; Convergence ; Differential Geometry ; Fixed Point Theory: Theory ; Fixed points (mathematics) ; Iterative methods ; Mapping ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Texts ; Topology</subject><ispartof>Fixed point theory and algorithms for sciences and engineering, 2016-12, Vol.2016 (1), p.1-13, Article 83</ispartof><rights>Pansuwan and Sintunavarat 2016</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3079-a717ed7a546af0cc202f52d5cb3e38741144bf692d5696cbaebe063ecabde28a3</citedby><cites>FETCH-LOGICAL-c3079-a717ed7a546af0cc202f52d5cb3e38741144bf692d5696cbaebe063ecabde28a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Pansuwan, Adoon</creatorcontrib><creatorcontrib>Sintunavarat, Wutiphol</creatorcontrib><title>A new iterative scheme for numerical reckoning fixed points of total asymptotically nonexpansive mappings</title><title>Fixed point theory and algorithms for sciences and engineering</title><addtitle>Fixed Point Theory Appl</addtitle><description>In this paper, we propose a new iterative algorithm to approximate fixed points of total asymptotically nonexpansive mappings in CAT ( 0 ) spaces. We also provide two examples to illustrate the convergence behavior of the proposed algorithm and numerically compare the convergence of the proposed iteration scheme with the existing schemes.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Computation and Applications</subject><subject>Convergence</subject><subject>Differential Geometry</subject><subject>Fixed Point Theory: Theory</subject><subject>Fixed points (mathematics)</subject><subject>Iterative methods</subject><subject>Mapping</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Texts</subject><subject>Topology</subject><issn>1687-1812</issn><issn>1687-1812</issn><issn>2730-5422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BL16qSdOm6XFZ_AcLXvQc0nS6Zm2TmrTqfntT6mERPM1j5vcew0PokpIbSgW_DZRxzhJCeULygiXlEVpQLoqECpoeH-hTdBbCjpC0zEm2QGaFLXxhM4BXg_kEHPQbdIAb57EdO_BGqxZ70O_OGrvFjfmGGvfO2CFg1-DBDfGuwr7ro5zgdo-ts_DdKxumwE71fXSGc3TSqDbAxe9cotf7u5f1Y7J5fnharzaJZqQoE1XQAupC5RlXDdE6JWmTp3WuKwZMFBmlWVY1vIwrXnJdKaiAcAZaVTWkQrElup5ze-8-RgiD7EzQ0LbKghuDpILlnDGWs4he_UF3bvQ2fhcpSoQQJM0iRWdKexeCh0b23nTK7yUlcipfzuXLWL6cypdl9KSzJ0TWbsEfJP9r-gGOsolS</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Pansuwan, Adoon</creator><creator>Sintunavarat, Wutiphol</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>A new iterative scheme for numerical reckoning fixed points of total asymptotically nonexpansive mappings</title><author>Pansuwan, Adoon ; Sintunavarat, Wutiphol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3079-a717ed7a546af0cc202f52d5cb3e38741144bf692d5696cbaebe063ecabde28a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Computation and Applications</topic><topic>Convergence</topic><topic>Differential Geometry</topic><topic>Fixed Point Theory: Theory</topic><topic>Fixed points (mathematics)</topic><topic>Iterative methods</topic><topic>Mapping</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Texts</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pansuwan, Adoon</creatorcontrib><creatorcontrib>Sintunavarat, Wutiphol</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pansuwan, Adoon</au><au>Sintunavarat, Wutiphol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new iterative scheme for numerical reckoning fixed points of total asymptotically nonexpansive mappings</atitle><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle><stitle>Fixed Point Theory Appl</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>2016</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>83</artnum><issn>1687-1812</issn><eissn>1687-1812</eissn><eissn>2730-5422</eissn><abstract>In this paper, we propose a new iterative algorithm to approximate fixed points of total asymptotically nonexpansive mappings in CAT ( 0 ) spaces. We also provide two examples to illustrate the convergence behavior of the proposed algorithm and numerically compare the convergence of the proposed iteration scheme with the existing schemes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13663-016-0573-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1812
ispartof Fixed point theory and algorithms for sciences and engineering, 2016-12, Vol.2016 (1), p.1-13, Article 83
issn 1687-1812
1687-1812
2730-5422
language eng
recordid cdi_proquest_miscellaneous_1835633353
source DOAJ Directory of Open Access Journals; SpringerLink Journals; Springer Nature OA Free Journals
subjects Algorithms
Analysis
Applications of Mathematics
Approximation
Asymptotic properties
Computation and Applications
Convergence
Differential Geometry
Fixed Point Theory: Theory
Fixed points (mathematics)
Iterative methods
Mapping
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Texts
Topology
title A new iterative scheme for numerical reckoning fixed points of total asymptotically nonexpansive mappings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20iterative%20scheme%20for%20numerical%20reckoning%20fixed%20points%20of%20total%20asymptotically%20nonexpansive%20mappings&rft.jtitle=Fixed%20point%20theory%20and%20algorithms%20for%20sciences%20and%20engineering&rft.au=Pansuwan,%20Adoon&rft.date=2016-12-01&rft.volume=2016&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=83&rft.issn=1687-1812&rft.eissn=1687-1812&rft_id=info:doi/10.1186/s13663-016-0573-9&rft_dat=%3Cproquest_cross%3E1835633353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810888024&rft_id=info:pmid/&rfr_iscdi=true