Cobalt-Doping in Molybdenum-Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution

Efficient hydrogen evolution reaction (HER) over noble‐metal‐free electrocatalysts provides one of the most promising pathways to face the energy crisis. Herein, facile cobalt‐doping based on Co‐modified MoOx–amine precursors is developed to optimize the electrochemical HER over Mo2C nanowires. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2016-08, Vol.26 (31), p.5590-5598
Hauptverfasser: Lin, Huanlei, Liu, Ning, Shi, Zhangping, Guo, Yulin, Tang, Yi, Gao, Qingsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5598
container_issue 31
container_start_page 5590
container_title Advanced functional materials
container_volume 26
creator Lin, Huanlei
Liu, Ning
Shi, Zhangping
Guo, Yulin
Tang, Yi
Gao, Qingsheng
description Efficient hydrogen evolution reaction (HER) over noble‐metal‐free electrocatalysts provides one of the most promising pathways to face the energy crisis. Herein, facile cobalt‐doping based on Co‐modified MoOx–amine precursors is developed to optimize the electrochemical HER over Mo2C nanowires. The effective Co‐doping into Mo2C crystal structure increases the electron density around Fermi level, resulting in the reduced strength of Mo–H for facilitated HER kinetics. As expected, the Co‐Mo2C nanowires with an optimal Co/Mo ratio of 0.020 display a low overpotential (η10 = 140 and 118 mV for reaching a current density of –10 mA cm−2; η100 = 200 and 195 mV for reaching a current density of –100 mA cm−2), a small Tafel slope (39 and 44 mV dec−1), and a low onset overpotential (40 and 25 mV) in 0.5 m H2SO4 and 1.0 m KOH, respectively. This work highlights a feasible strategy to explore efficient electrocatalysts via engineering on composition and nanostructure. Cobalt‐doping into Mo2C increases the electron density of Mo and optimizes the electrocatalytic hydrogen evolution over Mo2C nanowires. With an optimal Co/Mo ratio, the Co‐Mo2C nanowires exhibit high activity and good stability in both acidic and basic electrolytes, performing among the best of current noble‐metal‐free electrocatalysts.
doi_str_mv 10.1002/adfm.201600915
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835632217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835632217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3975-20a93e667ed7359ea2cd9cf7a2c85bcc259bcdc247a0efc9e071bdb4b79778e33</originalsourceid><addsrcrecordid>eNqFkDtPAkEURjdGExFtrbe0WZwHu8OUBHloADXBaDeZx10yOuzgzCLuvxeCIXZW3y3OucVJkmuMOhghcitNueoQhAuEOM5PkhYucJFRRHqnxxu_nScXMb4jhBmj3VaiBl5JV2d3fm2rZWqrdOZdowxUm1U2kEFZA-lcVn5rA8R04bcymHRYllZbqOp06EDXwWtZS9fUVqeTxgS_hCodfnm3qa2vLpOzUroIV7_bTl5Gw8Vgkk0fx_eD_jTTlLM8I0hyCkXBwDCac5BEG65LttterrQmOVfaaNJlEkGpOSCGlVFdxThjPaC0ndwc_q6D_9xArMXKRg3OyQr8Jgrco3lBCcFsh3YOqA4-xgClWAe7kqERGIl9TLGPKY4xdwI_CFvroPmHFv270eyvmx1cG2v4ProyfIiCUZaL1_lYPM_mT6MHvhBd-gN5N4oZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835632217</pqid></control><display><type>article</type><title>Cobalt-Doping in Molybdenum-Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution</title><source>Wiley Blackwell Journals</source><creator>Lin, Huanlei ; Liu, Ning ; Shi, Zhangping ; Guo, Yulin ; Tang, Yi ; Gao, Qingsheng</creator><creatorcontrib>Lin, Huanlei ; Liu, Ning ; Shi, Zhangping ; Guo, Yulin ; Tang, Yi ; Gao, Qingsheng</creatorcontrib><description>Efficient hydrogen evolution reaction (HER) over noble‐metal‐free electrocatalysts provides one of the most promising pathways to face the energy crisis. Herein, facile cobalt‐doping based on Co‐modified MoOx–amine precursors is developed to optimize the electrochemical HER over Mo2C nanowires. The effective Co‐doping into Mo2C crystal structure increases the electron density around Fermi level, resulting in the reduced strength of Mo–H for facilitated HER kinetics. As expected, the Co‐Mo2C nanowires with an optimal Co/Mo ratio of 0.020 display a low overpotential (η10 = 140 and 118 mV for reaching a current density of –10 mA cm−2; η100 = 200 and 195 mV for reaching a current density of –100 mA cm−2), a small Tafel slope (39 and 44 mV dec−1), and a low onset overpotential (40 and 25 mV) in 0.5 m H2SO4 and 1.0 m KOH, respectively. This work highlights a feasible strategy to explore efficient electrocatalysts via engineering on composition and nanostructure. Cobalt‐doping into Mo2C increases the electron density of Mo and optimizes the electrocatalytic hydrogen evolution over Mo2C nanowires. With an optimal Co/Mo ratio, the Co‐Mo2C nanowires exhibit high activity and good stability in both acidic and basic electrolytes, performing among the best of current noble‐metal‐free electrocatalysts.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201600915</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Cobalt ; cobalt-doping ; Current density ; Electrocatalysts ; Electron density ; electronic density ; hydrogen ; Hydrogen evolution ; molybdenum carbide ; Nanostructure ; Nanowires ; Optimization</subject><ispartof>Advanced functional materials, 2016-08, Vol.26 (31), p.5590-5598</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3975-20a93e667ed7359ea2cd9cf7a2c85bcc259bcdc247a0efc9e071bdb4b79778e33</citedby><cites>FETCH-LOGICAL-c3975-20a93e667ed7359ea2cd9cf7a2c85bcc259bcdc247a0efc9e071bdb4b79778e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201600915$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201600915$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lin, Huanlei</creatorcontrib><creatorcontrib>Liu, Ning</creatorcontrib><creatorcontrib>Shi, Zhangping</creatorcontrib><creatorcontrib>Guo, Yulin</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Gao, Qingsheng</creatorcontrib><title>Cobalt-Doping in Molybdenum-Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Efficient hydrogen evolution reaction (HER) over noble‐metal‐free electrocatalysts provides one of the most promising pathways to face the energy crisis. Herein, facile cobalt‐doping based on Co‐modified MoOx–amine precursors is developed to optimize the electrochemical HER over Mo2C nanowires. The effective Co‐doping into Mo2C crystal structure increases the electron density around Fermi level, resulting in the reduced strength of Mo–H for facilitated HER kinetics. As expected, the Co‐Mo2C nanowires with an optimal Co/Mo ratio of 0.020 display a low overpotential (η10 = 140 and 118 mV for reaching a current density of –10 mA cm−2; η100 = 200 and 195 mV for reaching a current density of –100 mA cm−2), a small Tafel slope (39 and 44 mV dec−1), and a low onset overpotential (40 and 25 mV) in 0.5 m H2SO4 and 1.0 m KOH, respectively. This work highlights a feasible strategy to explore efficient electrocatalysts via engineering on composition and nanostructure. Cobalt‐doping into Mo2C increases the electron density of Mo and optimizes the electrocatalytic hydrogen evolution over Mo2C nanowires. With an optimal Co/Mo ratio, the Co‐Mo2C nanowires exhibit high activity and good stability in both acidic and basic electrolytes, performing among the best of current noble‐metal‐free electrocatalysts.</description><subject>Cobalt</subject><subject>cobalt-doping</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electron density</subject><subject>electronic density</subject><subject>hydrogen</subject><subject>Hydrogen evolution</subject><subject>molybdenum carbide</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Optimization</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPAkEURjdGExFtrbe0WZwHu8OUBHloADXBaDeZx10yOuzgzCLuvxeCIXZW3y3OucVJkmuMOhghcitNueoQhAuEOM5PkhYucJFRRHqnxxu_nScXMb4jhBmj3VaiBl5JV2d3fm2rZWqrdOZdowxUm1U2kEFZA-lcVn5rA8R04bcymHRYllZbqOp06EDXwWtZS9fUVqeTxgS_hCodfnm3qa2vLpOzUroIV7_bTl5Gw8Vgkk0fx_eD_jTTlLM8I0hyCkXBwDCac5BEG65LttterrQmOVfaaNJlEkGpOSCGlVFdxThjPaC0ndwc_q6D_9xArMXKRg3OyQr8Jgrco3lBCcFsh3YOqA4-xgClWAe7kqERGIl9TLGPKY4xdwI_CFvroPmHFv270eyvmx1cG2v4ProyfIiCUZaL1_lYPM_mT6MHvhBd-gN5N4oZ</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Lin, Huanlei</creator><creator>Liu, Ning</creator><creator>Shi, Zhangping</creator><creator>Guo, Yulin</creator><creator>Tang, Yi</creator><creator>Gao, Qingsheng</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160801</creationdate><title>Cobalt-Doping in Molybdenum-Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution</title><author>Lin, Huanlei ; Liu, Ning ; Shi, Zhangping ; Guo, Yulin ; Tang, Yi ; Gao, Qingsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3975-20a93e667ed7359ea2cd9cf7a2c85bcc259bcdc247a0efc9e071bdb4b79778e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cobalt</topic><topic>cobalt-doping</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electron density</topic><topic>electronic density</topic><topic>hydrogen</topic><topic>Hydrogen evolution</topic><topic>molybdenum carbide</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Huanlei</creatorcontrib><creatorcontrib>Liu, Ning</creatorcontrib><creatorcontrib>Shi, Zhangping</creatorcontrib><creatorcontrib>Guo, Yulin</creatorcontrib><creatorcontrib>Tang, Yi</creatorcontrib><creatorcontrib>Gao, Qingsheng</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Huanlei</au><au>Liu, Ning</au><au>Shi, Zhangping</au><au>Guo, Yulin</au><au>Tang, Yi</au><au>Gao, Qingsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobalt-Doping in Molybdenum-Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>26</volume><issue>31</issue><spage>5590</spage><epage>5598</epage><pages>5590-5598</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Efficient hydrogen evolution reaction (HER) over noble‐metal‐free electrocatalysts provides one of the most promising pathways to face the energy crisis. Herein, facile cobalt‐doping based on Co‐modified MoOx–amine precursors is developed to optimize the electrochemical HER over Mo2C nanowires. The effective Co‐doping into Mo2C crystal structure increases the electron density around Fermi level, resulting in the reduced strength of Mo–H for facilitated HER kinetics. As expected, the Co‐Mo2C nanowires with an optimal Co/Mo ratio of 0.020 display a low overpotential (η10 = 140 and 118 mV for reaching a current density of –10 mA cm−2; η100 = 200 and 195 mV for reaching a current density of –100 mA cm−2), a small Tafel slope (39 and 44 mV dec−1), and a low onset overpotential (40 and 25 mV) in 0.5 m H2SO4 and 1.0 m KOH, respectively. This work highlights a feasible strategy to explore efficient electrocatalysts via engineering on composition and nanostructure. Cobalt‐doping into Mo2C increases the electron density of Mo and optimizes the electrocatalytic hydrogen evolution over Mo2C nanowires. With an optimal Co/Mo ratio, the Co‐Mo2C nanowires exhibit high activity and good stability in both acidic and basic electrolytes, performing among the best of current noble‐metal‐free electrocatalysts.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201600915</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2016-08, Vol.26 (31), p.5590-5598
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1835632217
source Wiley Blackwell Journals
subjects Cobalt
cobalt-doping
Current density
Electrocatalysts
Electron density
electronic density
hydrogen
Hydrogen evolution
molybdenum carbide
Nanostructure
Nanowires
Optimization
title Cobalt-Doping in Molybdenum-Carbide Nanowires Toward Efficient Electrocatalytic Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobalt-Doping%20in%20Molybdenum-Carbide%20Nanowires%20Toward%20Efficient%20Electrocatalytic%20Hydrogen%20Evolution&rft.jtitle=Advanced%20functional%20materials&rft.au=Lin,%20Huanlei&rft.date=2016-08-01&rft.volume=26&rft.issue=31&rft.spage=5590&rft.epage=5598&rft.pages=5590-5598&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201600915&rft_dat=%3Cproquest_cross%3E1835632217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835632217&rft_id=info:pmid/&rfr_iscdi=true