Towards ecohydrological drought monitoring and prediction using a land data assimilation system: A case study on the Horn of Africa drought (2010–2011)

Despite the importance of the ecological and agricultural aspects of severe droughts, no drought monitoring and prediction framework based on a land data assimilation system (LDAS) has been developed to monitor and predict vegetation dynamics in the middle of droughts. In this study, we applied a LD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2016-07, Vol.121 (14), p.8229-8242
Hauptverfasser: Sawada, Yohei, Koike, Toshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8242
container_issue 14
container_start_page 8229
container_title Journal of geophysical research. Atmospheres
container_volume 121
creator Sawada, Yohei
Koike, Toshio
description Despite the importance of the ecological and agricultural aspects of severe droughts, no drought monitoring and prediction framework based on a land data assimilation system (LDAS) has been developed to monitor and predict vegetation dynamics in the middle of droughts. In this study, we applied a LDAS that can simulate surface soil moisture, root‐zone soil moisture, and vegetation dynamics to the Horn of Africa drought in 2010–2011 caused by the precipitation deficit in two consecutive rainy seasons. We successfully simulated the ecohydrological drought quantified by the model‐estimated soil moistures and leaf area index (LAI). The root‐zone soil moisture and LAI are good indicators of prolonged droughts because they reflect the long‐term effects of past precipitation deficit. The precipitation deficit in 2010 significantly affected the land surface condition of the next rainy season in 2011, which indicated the importance of obtaining accurate initial soil moisture and LAI values for prediction of multiseasonal droughts. In addition, the general circulation model‐based seasonal meteorological prediction showed good performance in predicting land surface conditions of the Horn of Africa drought. Key Points We applied a land data assimilation system to the Horn of Africa drought in 2010–2011 We successfully monitor and predict both hydrological and ecological deficits due to drought The initial conditions of root‐zone soil moisture and LAI are important for drought prediction
doi_str_mv 10.1002/2015JD024705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835632192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815703377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5058-3acc9e317b6c6c193f8dfa5ee413e5b2cbf1f032389619b1fa25ef2f5d540eda3</originalsourceid><addsrcrecordid>eNqNkc9q3DAQxk1IoSHNLQ8gyCWBbKuRLNnqbcnfhkChJNCb0UqjXQXb2kg2wbe-Q095vT5JlWwIoYfQuczwzY_5-Jii2Af6GShlXxgFcXVKWVlRsVXsMJBqVislt1_n6ufHYi-lO5qrprwU5U7xeBMedLSJoAmrycbQhqU3uiV5HJergXSh90OIvl8S3Vuyjmi9GXzoyZieRdI-6VYPmuiUfOdb_bxOUxqw-0rmxOiEJA2jnUjWhxWSyxB7EhyZu5jNXr0Ocwb659fv3ODoU_HB6Tbh3kvfLW7Pz25OLmfX3y--ncyvZ0ZQUc-4NkYhh2ohjTSguKut0wKxBI5iwczCgaOc8VpJUAtwmgl0zAkrSopW893icHN3HcP9iGloOp8MtjkWhjE1UHMhOQPF_gMFUVHOqyqjB_-gd2GMfQ7SMFpKEIrX5XtUvpUtJXCZqeMNZWJIKaJr1tF3Ok4N0Obp983b32ecb_AH3-L0LttcXfw4FRxyxr9zSa96</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811926136</pqid></control><display><type>article</type><title>Towards ecohydrological drought monitoring and prediction using a land data assimilation system: A case study on the Horn of Africa drought (2010–2011)</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Alma/SFX Local Collection</source><creator>Sawada, Yohei ; Koike, Toshio</creator><creatorcontrib>Sawada, Yohei ; Koike, Toshio</creatorcontrib><description>Despite the importance of the ecological and agricultural aspects of severe droughts, no drought monitoring and prediction framework based on a land data assimilation system (LDAS) has been developed to monitor and predict vegetation dynamics in the middle of droughts. In this study, we applied a LDAS that can simulate surface soil moisture, root‐zone soil moisture, and vegetation dynamics to the Horn of Africa drought in 2010–2011 caused by the precipitation deficit in two consecutive rainy seasons. We successfully simulated the ecohydrological drought quantified by the model‐estimated soil moistures and leaf area index (LAI). The root‐zone soil moisture and LAI are good indicators of prolonged droughts because they reflect the long‐term effects of past precipitation deficit. The precipitation deficit in 2010 significantly affected the land surface condition of the next rainy season in 2011, which indicated the importance of obtaining accurate initial soil moisture and LAI values for prediction of multiseasonal droughts. In addition, the general circulation model‐based seasonal meteorological prediction showed good performance in predicting land surface conditions of the Horn of Africa drought. Key Points We applied a land data assimilation system to the Horn of Africa drought in 2010–2011 We successfully monitor and predict both hydrological and ecological deficits due to drought The initial conditions of root‐zone soil moisture and LAI are important for drought prediction</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2015JD024705</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric precipitations ; Case studies ; Computer simulation ; Data assimilation ; Data collection ; Drought ; Drought monitoring ; Droughts ; Dynamics ; ecohydrological modeling ; Ecohydrology ; Ecological monitoring ; Environmental monitoring ; Frameworks ; General circulation models ; Geophysics ; Horns ; Land ; land data assimilation system ; Leaf area ; Leaf area index ; Mathematical models ; Meteorology ; Performance prediction ; Precipitation ; Rainy season ; seasonal prediction ; Seasons ; Soil ; Soil dynamics ; Soil moisture ; Soil surfaces ; Vegetation ; Wet season</subject><ispartof>Journal of geophysical research. Atmospheres, 2016-07, Vol.121 (14), p.8229-8242</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5058-3acc9e317b6c6c193f8dfa5ee413e5b2cbf1f032389619b1fa25ef2f5d540eda3</citedby><cites>FETCH-LOGICAL-c5058-3acc9e317b6c6c193f8dfa5ee413e5b2cbf1f032389619b1fa25ef2f5d540eda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JD024705$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JD024705$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Sawada, Yohei</creatorcontrib><creatorcontrib>Koike, Toshio</creatorcontrib><title>Towards ecohydrological drought monitoring and prediction using a land data assimilation system: A case study on the Horn of Africa drought (2010–2011)</title><title>Journal of geophysical research. Atmospheres</title><description>Despite the importance of the ecological and agricultural aspects of severe droughts, no drought monitoring and prediction framework based on a land data assimilation system (LDAS) has been developed to monitor and predict vegetation dynamics in the middle of droughts. In this study, we applied a LDAS that can simulate surface soil moisture, root‐zone soil moisture, and vegetation dynamics to the Horn of Africa drought in 2010–2011 caused by the precipitation deficit in two consecutive rainy seasons. We successfully simulated the ecohydrological drought quantified by the model‐estimated soil moistures and leaf area index (LAI). The root‐zone soil moisture and LAI are good indicators of prolonged droughts because they reflect the long‐term effects of past precipitation deficit. The precipitation deficit in 2010 significantly affected the land surface condition of the next rainy season in 2011, which indicated the importance of obtaining accurate initial soil moisture and LAI values for prediction of multiseasonal droughts. In addition, the general circulation model‐based seasonal meteorological prediction showed good performance in predicting land surface conditions of the Horn of Africa drought. Key Points We applied a land data assimilation system to the Horn of Africa drought in 2010–2011 We successfully monitor and predict both hydrological and ecological deficits due to drought The initial conditions of root‐zone soil moisture and LAI are important for drought prediction</description><subject>Atmospheric precipitations</subject><subject>Case studies</subject><subject>Computer simulation</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Drought</subject><subject>Drought monitoring</subject><subject>Droughts</subject><subject>Dynamics</subject><subject>ecohydrological modeling</subject><subject>Ecohydrology</subject><subject>Ecological monitoring</subject><subject>Environmental monitoring</subject><subject>Frameworks</subject><subject>General circulation models</subject><subject>Geophysics</subject><subject>Horns</subject><subject>Land</subject><subject>land data assimilation system</subject><subject>Leaf area</subject><subject>Leaf area index</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Performance prediction</subject><subject>Precipitation</subject><subject>Rainy season</subject><subject>seasonal prediction</subject><subject>Seasons</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil moisture</subject><subject>Soil surfaces</subject><subject>Vegetation</subject><subject>Wet season</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc9q3DAQxk1IoSHNLQ8gyCWBbKuRLNnqbcnfhkChJNCb0UqjXQXb2kg2wbe-Q095vT5JlWwIoYfQuczwzY_5-Jii2Af6GShlXxgFcXVKWVlRsVXsMJBqVislt1_n6ufHYi-lO5qrprwU5U7xeBMedLSJoAmrycbQhqU3uiV5HJergXSh90OIvl8S3Vuyjmi9GXzoyZieRdI-6VYPmuiUfOdb_bxOUxqw-0rmxOiEJA2jnUjWhxWSyxB7EhyZu5jNXr0Ocwb659fv3ODoU_HB6Tbh3kvfLW7Pz25OLmfX3y--ncyvZ0ZQUc-4NkYhh2ohjTSguKut0wKxBI5iwczCgaOc8VpJUAtwmgl0zAkrSopW893icHN3HcP9iGloOp8MtjkWhjE1UHMhOQPF_gMFUVHOqyqjB_-gd2GMfQ7SMFpKEIrX5XtUvpUtJXCZqeMNZWJIKaJr1tF3Ok4N0Obp983b32ecb_AH3-L0LttcXfw4FRxyxr9zSa96</recordid><startdate>20160727</startdate><enddate>20160727</enddate><creator>Sawada, Yohei</creator><creator>Koike, Toshio</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20160727</creationdate><title>Towards ecohydrological drought monitoring and prediction using a land data assimilation system: A case study on the Horn of Africa drought (2010–2011)</title><author>Sawada, Yohei ; Koike, Toshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5058-3acc9e317b6c6c193f8dfa5ee413e5b2cbf1f032389619b1fa25ef2f5d540eda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atmospheric precipitations</topic><topic>Case studies</topic><topic>Computer simulation</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Drought</topic><topic>Drought monitoring</topic><topic>Droughts</topic><topic>Dynamics</topic><topic>ecohydrological modeling</topic><topic>Ecohydrology</topic><topic>Ecological monitoring</topic><topic>Environmental monitoring</topic><topic>Frameworks</topic><topic>General circulation models</topic><topic>Geophysics</topic><topic>Horns</topic><topic>Land</topic><topic>land data assimilation system</topic><topic>Leaf area</topic><topic>Leaf area index</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Performance prediction</topic><topic>Precipitation</topic><topic>Rainy season</topic><topic>seasonal prediction</topic><topic>Seasons</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil moisture</topic><topic>Soil surfaces</topic><topic>Vegetation</topic><topic>Wet season</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawada, Yohei</creatorcontrib><creatorcontrib>Koike, Toshio</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawada, Yohei</au><au>Koike, Toshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards ecohydrological drought monitoring and prediction using a land data assimilation system: A case study on the Horn of Africa drought (2010–2011)</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2016-07-27</date><risdate>2016</risdate><volume>121</volume><issue>14</issue><spage>8229</spage><epage>8242</epage><pages>8229-8242</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Despite the importance of the ecological and agricultural aspects of severe droughts, no drought monitoring and prediction framework based on a land data assimilation system (LDAS) has been developed to monitor and predict vegetation dynamics in the middle of droughts. In this study, we applied a LDAS that can simulate surface soil moisture, root‐zone soil moisture, and vegetation dynamics to the Horn of Africa drought in 2010–2011 caused by the precipitation deficit in two consecutive rainy seasons. We successfully simulated the ecohydrological drought quantified by the model‐estimated soil moistures and leaf area index (LAI). The root‐zone soil moisture and LAI are good indicators of prolonged droughts because they reflect the long‐term effects of past precipitation deficit. The precipitation deficit in 2010 significantly affected the land surface condition of the next rainy season in 2011, which indicated the importance of obtaining accurate initial soil moisture and LAI values for prediction of multiseasonal droughts. In addition, the general circulation model‐based seasonal meteorological prediction showed good performance in predicting land surface conditions of the Horn of Africa drought. Key Points We applied a land data assimilation system to the Horn of Africa drought in 2010–2011 We successfully monitor and predict both hydrological and ecological deficits due to drought The initial conditions of root‐zone soil moisture and LAI are important for drought prediction</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JD024705</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2016-07, Vol.121 (14), p.8229-8242
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1835632192
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Alma/SFX Local Collection
subjects Atmospheric precipitations
Case studies
Computer simulation
Data assimilation
Data collection
Drought
Drought monitoring
Droughts
Dynamics
ecohydrological modeling
Ecohydrology
Ecological monitoring
Environmental monitoring
Frameworks
General circulation models
Geophysics
Horns
Land
land data assimilation system
Leaf area
Leaf area index
Mathematical models
Meteorology
Performance prediction
Precipitation
Rainy season
seasonal prediction
Seasons
Soil
Soil dynamics
Soil moisture
Soil surfaces
Vegetation
Wet season
title Towards ecohydrological drought monitoring and prediction using a land data assimilation system: A case study on the Horn of Africa drought (2010–2011)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20ecohydrological%20drought%20monitoring%20and%20prediction%20using%20a%20land%20data%20assimilation%20system:%20A%20case%20study%20on%20the%20Horn%20of%20Africa%20drought%20(2010%E2%80%932011)&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Sawada,%20Yohei&rft.date=2016-07-27&rft.volume=121&rft.issue=14&rft.spage=8229&rft.epage=8242&rft.pages=8229-8242&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2015JD024705&rft_dat=%3Cproquest_cross%3E1815703377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811926136&rft_id=info:pmid/&rfr_iscdi=true