Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection

The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2016-10, Vol.25 (10), p.4729-4742
Hauptverfasser: Ferreira, Anselmo, Felipussi, Siovani C., Alfaro, Carlos, Fonseca, Pablo, Vargas-Munoz, John E., dos Santos, Jefersson A., Rocha, Anderson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4742
container_issue 10
container_start_page 4729
container_title IEEE transactions on image processing
container_volume 25
creator Ferreira, Anselmo
Felipussi, Siovani C.
Alfaro, Carlos
Fonseca, Pablo
Vargas-Munoz, John E.
dos Santos, Jefersson A.
Rocha, Anderson
description The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications.
doi_str_mv 10.1109/TIP.2016.2593583
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835631939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7517389</ieee_id><sourcerecordid>4156222831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-d22f09ca34bc0152d617a3ee23a6c9e4695057df4ab5fe5bb033fe0f4ebdf00d3</originalsourceid><addsrcrecordid>eNqN0U1vEzEQBmALgWgp3JGQ0EpcuGw64_HH-kjTBqoWgUQ5r7y747JVEgc72yr_HlcJPXDiZEvzzMjjV4i3CDNEcKc3l99nEtDMpHakG3omjtEprAGUfF7uoG1tUbkj8SrnOwBUGs1LcSStUg0ZPBYXZ_zL348xVVfr-LDk4ZarHxvfc33mMw_VYspjXFehgHnc7Oqv8Z6rRUy3nHbVOW-535b6a_Ei-GXmN4fzRPxcXNzMv9TX3z5fzj9d1z01sK0HKQO43pPqekAtB4PWE7Mkb3rHyjhdXjwE5TsdWHcdEAWGoLgbAsBAJ-Ljfu4mxd8T5227GnPPy6Vfc5xyiw1pQ-jI_QeVxpKRpAr98A-9i1Nal0WKQiKjrLJFwV71KeacOLSbNK582rUI7WMabUmjfUyjPaRRWt4fBk_dioenhr_fX8C7PRiZ-alsNVpqHP0B7pqMHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813364747</pqid></control><display><type>article</type><title>Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Ferreira, Anselmo ; Felipussi, Siovani C. ; Alfaro, Carlos ; Fonseca, Pablo ; Vargas-Munoz, John E. ; dos Santos, Jefersson A. ; Rocha, Anderson</creator><creatorcontrib>Ferreira, Anselmo ; Felipussi, Siovani C. ; Alfaro, Carlos ; Fonseca, Pablo ; Vargas-Munoz, John E. ; dos Santos, Jefersson A. ; Rocha, Anderson</creatorcontrib><description>The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2016.2593583</identifier><identifier>PMID: 27448361</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>behaviour knowledge space ; Conditional probability ; Copy-move forgery detection ; Decision making ; Detectors ; Feature extraction ; Forgery ; fusion ; Image detection ; Image processing ; Lighting ; Machine learning ; multi-direction data analysis ; multi-scale data analysis ; Robustness ; Training ; Training data ; Transaction processing ; Transforms</subject><ispartof>IEEE transactions on image processing, 2016-10, Vol.25 (10), p.4729-4742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-d22f09ca34bc0152d617a3ee23a6c9e4695057df4ab5fe5bb033fe0f4ebdf00d3</citedby><cites>FETCH-LOGICAL-c380t-d22f09ca34bc0152d617a3ee23a6c9e4695057df4ab5fe5bb033fe0f4ebdf00d3</cites><orcidid>0000-0002-2196-7232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7517389$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7517389$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27448361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, Anselmo</creatorcontrib><creatorcontrib>Felipussi, Siovani C.</creatorcontrib><creatorcontrib>Alfaro, Carlos</creatorcontrib><creatorcontrib>Fonseca, Pablo</creatorcontrib><creatorcontrib>Vargas-Munoz, John E.</creatorcontrib><creatorcontrib>dos Santos, Jefersson A.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><title>Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications.</description><subject>behaviour knowledge space</subject><subject>Conditional probability</subject><subject>Copy-move forgery detection</subject><subject>Decision making</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Forgery</subject><subject>fusion</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Lighting</subject><subject>Machine learning</subject><subject>multi-direction data analysis</subject><subject>multi-scale data analysis</subject><subject>Robustness</subject><subject>Training</subject><subject>Training data</subject><subject>Transaction processing</subject><subject>Transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1vEzEQBmALgWgp3JGQ0EpcuGw64_HH-kjTBqoWgUQ5r7y747JVEgc72yr_HlcJPXDiZEvzzMjjV4i3CDNEcKc3l99nEtDMpHakG3omjtEprAGUfF7uoG1tUbkj8SrnOwBUGs1LcSStUg0ZPBYXZ_zL348xVVfr-LDk4ZarHxvfc33mMw_VYspjXFehgHnc7Oqv8Z6rRUy3nHbVOW-535b6a_Ei-GXmN4fzRPxcXNzMv9TX3z5fzj9d1z01sK0HKQO43pPqekAtB4PWE7Mkb3rHyjhdXjwE5TsdWHcdEAWGoLgbAsBAJ-Ljfu4mxd8T5227GnPPy6Vfc5xyiw1pQ-jI_QeVxpKRpAr98A-9i1Nal0WKQiKjrLJFwV71KeacOLSbNK582rUI7WMabUmjfUyjPaRRWt4fBk_dioenhr_fX8C7PRiZ-alsNVpqHP0B7pqMHQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Ferreira, Anselmo</creator><creator>Felipussi, Siovani C.</creator><creator>Alfaro, Carlos</creator><creator>Fonseca, Pablo</creator><creator>Vargas-Munoz, John E.</creator><creator>dos Santos, Jefersson A.</creator><creator>Rocha, Anderson</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-2196-7232</orcidid></search><sort><creationdate>20161001</creationdate><title>Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection</title><author>Ferreira, Anselmo ; Felipussi, Siovani C. ; Alfaro, Carlos ; Fonseca, Pablo ; Vargas-Munoz, John E. ; dos Santos, Jefersson A. ; Rocha, Anderson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-d22f09ca34bc0152d617a3ee23a6c9e4695057df4ab5fe5bb033fe0f4ebdf00d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>behaviour knowledge space</topic><topic>Conditional probability</topic><topic>Copy-move forgery detection</topic><topic>Decision making</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Forgery</topic><topic>fusion</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Lighting</topic><topic>Machine learning</topic><topic>multi-direction data analysis</topic><topic>multi-scale data analysis</topic><topic>Robustness</topic><topic>Training</topic><topic>Training data</topic><topic>Transaction processing</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Anselmo</creatorcontrib><creatorcontrib>Felipussi, Siovani C.</creatorcontrib><creatorcontrib>Alfaro, Carlos</creatorcontrib><creatorcontrib>Fonseca, Pablo</creatorcontrib><creatorcontrib>Vargas-Munoz, John E.</creatorcontrib><creatorcontrib>dos Santos, Jefersson A.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferreira, Anselmo</au><au>Felipussi, Siovani C.</au><au>Alfaro, Carlos</au><au>Fonseca, Pablo</au><au>Vargas-Munoz, John E.</au><au>dos Santos, Jefersson A.</au><au>Rocha, Anderson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>25</volume><issue>10</issue><spage>4729</spage><epage>4742</epage><pages>4729-4742</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27448361</pmid><doi>10.1109/TIP.2016.2593583</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2196-7232</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2016-10, Vol.25 (10), p.4729-4742
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1835631939
source IEEE Electronic Library (IEL)
subjects behaviour knowledge space
Conditional probability
Copy-move forgery detection
Decision making
Detectors
Feature extraction
Forgery
fusion
Image detection
Image processing
Lighting
Machine learning
multi-direction data analysis
multi-scale data analysis
Robustness
Training
Training data
Transaction processing
Transforms
title Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20Knowledge%20Space-Based%20Fusion%20for%20Copy-Move%20Forgery%20Detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ferreira,%20Anselmo&rft.date=2016-10-01&rft.volume=25&rft.issue=10&rft.spage=4729&rft.epage=4742&rft.pages=4729-4742&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2016.2593583&rft_dat=%3Cproquest_RIE%3E4156222831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813364747&rft_id=info:pmid/27448361&rft_ieee_id=7517389&rfr_iscdi=true