Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection
The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2016-10, Vol.25 (10), p.4729-4742 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4742 |
---|---|
container_issue | 10 |
container_start_page | 4729 |
container_title | IEEE transactions on image processing |
container_volume | 25 |
creator | Ferreira, Anselmo Felipussi, Siovani C. Alfaro, Carlos Fonseca, Pablo Vargas-Munoz, John E. dos Santos, Jefersson A. Rocha, Anderson |
description | The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications. |
doi_str_mv | 10.1109/TIP.2016.2593583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835631939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7517389</ieee_id><sourcerecordid>4156222831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-d22f09ca34bc0152d617a3ee23a6c9e4695057df4ab5fe5bb033fe0f4ebdf00d3</originalsourceid><addsrcrecordid>eNqN0U1vEzEQBmALgWgp3JGQ0EpcuGw64_HH-kjTBqoWgUQ5r7y747JVEgc72yr_HlcJPXDiZEvzzMjjV4i3CDNEcKc3l99nEtDMpHakG3omjtEprAGUfF7uoG1tUbkj8SrnOwBUGs1LcSStUg0ZPBYXZ_zL348xVVfr-LDk4ZarHxvfc33mMw_VYspjXFehgHnc7Oqv8Z6rRUy3nHbVOW-535b6a_Ei-GXmN4fzRPxcXNzMv9TX3z5fzj9d1z01sK0HKQO43pPqekAtB4PWE7Mkb3rHyjhdXjwE5TsdWHcdEAWGoLgbAsBAJ-Ljfu4mxd8T5227GnPPy6Vfc5xyiw1pQ-jI_QeVxpKRpAr98A-9i1Nal0WKQiKjrLJFwV71KeacOLSbNK582rUI7WMabUmjfUyjPaRRWt4fBk_dioenhr_fX8C7PRiZ-alsNVpqHP0B7pqMHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813364747</pqid></control><display><type>article</type><title>Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Ferreira, Anselmo ; Felipussi, Siovani C. ; Alfaro, Carlos ; Fonseca, Pablo ; Vargas-Munoz, John E. ; dos Santos, Jefersson A. ; Rocha, Anderson</creator><creatorcontrib>Ferreira, Anselmo ; Felipussi, Siovani C. ; Alfaro, Carlos ; Fonseca, Pablo ; Vargas-Munoz, John E. ; dos Santos, Jefersson A. ; Rocha, Anderson</creatorcontrib><description>The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2016.2593583</identifier><identifier>PMID: 27448361</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>behaviour knowledge space ; Conditional probability ; Copy-move forgery detection ; Decision making ; Detectors ; Feature extraction ; Forgery ; fusion ; Image detection ; Image processing ; Lighting ; Machine learning ; multi-direction data analysis ; multi-scale data analysis ; Robustness ; Training ; Training data ; Transaction processing ; Transforms</subject><ispartof>IEEE transactions on image processing, 2016-10, Vol.25 (10), p.4729-4742</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-d22f09ca34bc0152d617a3ee23a6c9e4695057df4ab5fe5bb033fe0f4ebdf00d3</citedby><cites>FETCH-LOGICAL-c380t-d22f09ca34bc0152d617a3ee23a6c9e4695057df4ab5fe5bb033fe0f4ebdf00d3</cites><orcidid>0000-0002-2196-7232</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7517389$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7517389$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27448361$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferreira, Anselmo</creatorcontrib><creatorcontrib>Felipussi, Siovani C.</creatorcontrib><creatorcontrib>Alfaro, Carlos</creatorcontrib><creatorcontrib>Fonseca, Pablo</creatorcontrib><creatorcontrib>Vargas-Munoz, John E.</creatorcontrib><creatorcontrib>dos Santos, Jefersson A.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><title>Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications.</description><subject>behaviour knowledge space</subject><subject>Conditional probability</subject><subject>Copy-move forgery detection</subject><subject>Decision making</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Forgery</subject><subject>fusion</subject><subject>Image detection</subject><subject>Image processing</subject><subject>Lighting</subject><subject>Machine learning</subject><subject>multi-direction data analysis</subject><subject>multi-scale data analysis</subject><subject>Robustness</subject><subject>Training</subject><subject>Training data</subject><subject>Transaction processing</subject><subject>Transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1vEzEQBmALgWgp3JGQ0EpcuGw64_HH-kjTBqoWgUQ5r7y747JVEgc72yr_HlcJPXDiZEvzzMjjV4i3CDNEcKc3l99nEtDMpHakG3omjtEprAGUfF7uoG1tUbkj8SrnOwBUGs1LcSStUg0ZPBYXZ_zL348xVVfr-LDk4ZarHxvfc33mMw_VYspjXFehgHnc7Oqv8Z6rRUy3nHbVOW-535b6a_Ei-GXmN4fzRPxcXNzMv9TX3z5fzj9d1z01sK0HKQO43pPqekAtB4PWE7Mkb3rHyjhdXjwE5TsdWHcdEAWGoLgbAsBAJ-Ljfu4mxd8T5227GnPPy6Vfc5xyiw1pQ-jI_QeVxpKRpAr98A-9i1Nal0WKQiKjrLJFwV71KeacOLSbNK582rUI7WMabUmjfUyjPaRRWt4fBk_dioenhr_fX8C7PRiZ-alsNVpqHP0B7pqMHQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Ferreira, Anselmo</creator><creator>Felipussi, Siovani C.</creator><creator>Alfaro, Carlos</creator><creator>Fonseca, Pablo</creator><creator>Vargas-Munoz, John E.</creator><creator>dos Santos, Jefersson A.</creator><creator>Rocha, Anderson</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-2196-7232</orcidid></search><sort><creationdate>20161001</creationdate><title>Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection</title><author>Ferreira, Anselmo ; Felipussi, Siovani C. ; Alfaro, Carlos ; Fonseca, Pablo ; Vargas-Munoz, John E. ; dos Santos, Jefersson A. ; Rocha, Anderson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-d22f09ca34bc0152d617a3ee23a6c9e4695057df4ab5fe5bb033fe0f4ebdf00d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>behaviour knowledge space</topic><topic>Conditional probability</topic><topic>Copy-move forgery detection</topic><topic>Decision making</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Forgery</topic><topic>fusion</topic><topic>Image detection</topic><topic>Image processing</topic><topic>Lighting</topic><topic>Machine learning</topic><topic>multi-direction data analysis</topic><topic>multi-scale data analysis</topic><topic>Robustness</topic><topic>Training</topic><topic>Training data</topic><topic>Transaction processing</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Anselmo</creatorcontrib><creatorcontrib>Felipussi, Siovani C.</creatorcontrib><creatorcontrib>Alfaro, Carlos</creatorcontrib><creatorcontrib>Fonseca, Pablo</creatorcontrib><creatorcontrib>Vargas-Munoz, John E.</creatorcontrib><creatorcontrib>dos Santos, Jefersson A.</creatorcontrib><creatorcontrib>Rocha, Anderson</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ferreira, Anselmo</au><au>Felipussi, Siovani C.</au><au>Alfaro, Carlos</au><au>Fonseca, Pablo</au><au>Vargas-Munoz, John E.</au><au>dos Santos, Jefersson A.</au><au>Rocha, Anderson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>25</volume><issue>10</issue><spage>4729</spage><epage>4742</epage><pages>4729-4742</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterward, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex data sets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature, show the effectiveness of the proposed method and its suitability for real-world applications.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27448361</pmid><doi>10.1109/TIP.2016.2593583</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2196-7232</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2016-10, Vol.25 (10), p.4729-4742 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835631939 |
source | IEEE Electronic Library (IEL) |
subjects | behaviour knowledge space Conditional probability Copy-move forgery detection Decision making Detectors Feature extraction Forgery fusion Image detection Image processing Lighting Machine learning multi-direction data analysis multi-scale data analysis Robustness Training Training data Transaction processing Transforms |
title | Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20Knowledge%20Space-Based%20Fusion%20for%20Copy-Move%20Forgery%20Detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ferreira,%20Anselmo&rft.date=2016-10-01&rft.volume=25&rft.issue=10&rft.spage=4729&rft.epage=4742&rft.pages=4729-4742&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2016.2593583&rft_dat=%3Cproquest_RIE%3E4156222831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813364747&rft_id=info:pmid/27448361&rft_ieee_id=7517389&rfr_iscdi=true |