H2S detection using low-cost SnO2 nano-particle Bi-layer OFETs

In this article, a unique platform with an organic field-effect transistor (OFET) integrated with metal oxide nanoparticles for sensing of H2S gas is presented. Metal oxide nanoparticles such as SnO2 and ZnO synthesized using herbal techniques were used in the fabrication of OFETs using a bi-layer t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2016-11, Vol.235, p.378-385
Hauptverfasser: Surya, Sandeep G., Ashwath, B.S. Narayan, Mishra, Sushma, A.R.B., Karthik, Sastry, A.B., B.L.V., Prasad, Rangappa, Dinesh, Rao, V. Ramgopal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 385
container_issue
container_start_page 378
container_title Sensors and actuators. B, Chemical
container_volume 235
creator Surya, Sandeep G.
Ashwath, B.S. Narayan
Mishra, Sushma
A.R.B., Karthik
Sastry, A.B.
B.L.V., Prasad
Rangappa, Dinesh
Rao, V. Ramgopal
description In this article, a unique platform with an organic field-effect transistor (OFET) integrated with metal oxide nanoparticles for sensing of H2S gas is presented. Metal oxide nanoparticles such as SnO2 and ZnO synthesized using herbal techniques were used in the fabrication of OFETs using a bi-layer technique. The as-synthesized nanoparticles were characterized by Field Effect Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD) and UV–vis Spectroscopy (UV–vis) to establish the material properties. We showed that the SnO2 based OFETs displayed better response for H2S at room temperature (25°C) compared to the OFETs fabricated with ZnO. The characterization of the sensors by using extracted electrical parameters like field-effect mobility (μ), On-Current (Ion), threshold voltage (VT) and saturation current (IDsat) establish the fact that the SnO2 based OFETs detect H2S gas at room temperature. Plausible mechanisms explaining the H2S gas detection by bi-layer film were discussed. On the other hand, the sensitivity of these OFETs against other reducing gases was less.
doi_str_mv 10.1016/j.snb.2016.05.096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835623853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092540051630781X</els_id><sourcerecordid>1835623853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c60d7ab4949a5576cec8bfd243e3ee5dc3ef1c95854890e1f329709844500f3e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4G2PXrJONsnuBkFQUSsUeqieQ5qdlZRtUpOt0rc3pZ49zc_w_QPzEXLNoGTA6tt1mfyqrHIsQZag6hMyYW3DKYemOSUTUJWkAkCek4uU1gAgeA0Tcj-rlkWHI9rRBV_skvOfxRB-qA1pLJZ-URXe-EC3Jo7ODlg8OjqYPcZi8fL8ni7JWW-GhFd_c0o-8vppRueL17enhzm1nMNIbQ1dY1ZCCWWkbGqLtl31XSU4ckTZWY49s0q2UrQKkPW8Ug2oVggJ0GdoSm6Od7cxfO0wjXrjksVhMB7DLmnWcllXvJU8o-yI2hhSitjrbXQbE_eagT640mudXemDKw1SZ1e5c3fsYP7h22HUyTr0FjsXsxndBfdP-xdyXG-t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835623853</pqid></control><display><type>article</type><title>H2S detection using low-cost SnO2 nano-particle Bi-layer OFETs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Surya, Sandeep G. ; Ashwath, B.S. Narayan ; Mishra, Sushma ; A.R.B., Karthik ; Sastry, A.B. ; B.L.V., Prasad ; Rangappa, Dinesh ; Rao, V. Ramgopal</creator><creatorcontrib>Surya, Sandeep G. ; Ashwath, B.S. Narayan ; Mishra, Sushma ; A.R.B., Karthik ; Sastry, A.B. ; B.L.V., Prasad ; Rangappa, Dinesh ; Rao, V. Ramgopal</creatorcontrib><description>In this article, a unique platform with an organic field-effect transistor (OFET) integrated with metal oxide nanoparticles for sensing of H2S gas is presented. Metal oxide nanoparticles such as SnO2 and ZnO synthesized using herbal techniques were used in the fabrication of OFETs using a bi-layer technique. The as-synthesized nanoparticles were characterized by Field Effect Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD) and UV–vis Spectroscopy (UV–vis) to establish the material properties. We showed that the SnO2 based OFETs displayed better response for H2S at room temperature (25°C) compared to the OFETs fabricated with ZnO. The characterization of the sensors by using extracted electrical parameters like field-effect mobility (μ), On-Current (Ion), threshold voltage (VT) and saturation current (IDsat) establish the fact that the SnO2 based OFETs detect H2S gas at room temperature. Plausible mechanisms explaining the H2S gas detection by bi-layer film were discussed. On the other hand, the sensitivity of these OFETs against other reducing gases was less.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2016.05.096</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bi-layer ; Field effect transistors ; H2S detection ; Metal oxides ; Metal-oxide ; Nanoparticles ; OFETs ; Semiconductor devices ; Sensor ; Sensors ; Threshold voltage ; Tin dioxide ; Zinc oxide</subject><ispartof>Sensors and actuators. B, Chemical, 2016-11, Vol.235, p.378-385</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c60d7ab4949a5576cec8bfd243e3ee5dc3ef1c95854890e1f329709844500f3e3</citedby><cites>FETCH-LOGICAL-c330t-c60d7ab4949a5576cec8bfd243e3ee5dc3ef1c95854890e1f329709844500f3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2016.05.096$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Surya, Sandeep G.</creatorcontrib><creatorcontrib>Ashwath, B.S. Narayan</creatorcontrib><creatorcontrib>Mishra, Sushma</creatorcontrib><creatorcontrib>A.R.B., Karthik</creatorcontrib><creatorcontrib>Sastry, A.B.</creatorcontrib><creatorcontrib>B.L.V., Prasad</creatorcontrib><creatorcontrib>Rangappa, Dinesh</creatorcontrib><creatorcontrib>Rao, V. Ramgopal</creatorcontrib><title>H2S detection using low-cost SnO2 nano-particle Bi-layer OFETs</title><title>Sensors and actuators. B, Chemical</title><description>In this article, a unique platform with an organic field-effect transistor (OFET) integrated with metal oxide nanoparticles for sensing of H2S gas is presented. Metal oxide nanoparticles such as SnO2 and ZnO synthesized using herbal techniques were used in the fabrication of OFETs using a bi-layer technique. The as-synthesized nanoparticles were characterized by Field Effect Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD) and UV–vis Spectroscopy (UV–vis) to establish the material properties. We showed that the SnO2 based OFETs displayed better response for H2S at room temperature (25°C) compared to the OFETs fabricated with ZnO. The characterization of the sensors by using extracted electrical parameters like field-effect mobility (μ), On-Current (Ion), threshold voltage (VT) and saturation current (IDsat) establish the fact that the SnO2 based OFETs detect H2S gas at room temperature. Plausible mechanisms explaining the H2S gas detection by bi-layer film were discussed. On the other hand, the sensitivity of these OFETs against other reducing gases was less.</description><subject>Bi-layer</subject><subject>Field effect transistors</subject><subject>H2S detection</subject><subject>Metal oxides</subject><subject>Metal-oxide</subject><subject>Nanoparticles</subject><subject>OFETs</subject><subject>Semiconductor devices</subject><subject>Sensor</subject><subject>Sensors</subject><subject>Threshold voltage</subject><subject>Tin dioxide</subject><subject>Zinc oxide</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4G2PXrJONsnuBkFQUSsUeqieQ5qdlZRtUpOt0rc3pZ49zc_w_QPzEXLNoGTA6tt1mfyqrHIsQZag6hMyYW3DKYemOSUTUJWkAkCek4uU1gAgeA0Tcj-rlkWHI9rRBV_skvOfxRB-qA1pLJZ-URXe-EC3Jo7ODlg8OjqYPcZi8fL8ni7JWW-GhFd_c0o-8vppRueL17enhzm1nMNIbQ1dY1ZCCWWkbGqLtl31XSU4ckTZWY49s0q2UrQKkPW8Ug2oVggJ0GdoSm6Od7cxfO0wjXrjksVhMB7DLmnWcllXvJU8o-yI2hhSitjrbXQbE_eagT640mudXemDKw1SZ1e5c3fsYP7h22HUyTr0FjsXsxndBfdP-xdyXG-t</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Surya, Sandeep G.</creator><creator>Ashwath, B.S. Narayan</creator><creator>Mishra, Sushma</creator><creator>A.R.B., Karthik</creator><creator>Sastry, A.B.</creator><creator>B.L.V., Prasad</creator><creator>Rangappa, Dinesh</creator><creator>Rao, V. Ramgopal</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161101</creationdate><title>H2S detection using low-cost SnO2 nano-particle Bi-layer OFETs</title><author>Surya, Sandeep G. ; Ashwath, B.S. Narayan ; Mishra, Sushma ; A.R.B., Karthik ; Sastry, A.B. ; B.L.V., Prasad ; Rangappa, Dinesh ; Rao, V. Ramgopal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c60d7ab4949a5576cec8bfd243e3ee5dc3ef1c95854890e1f329709844500f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bi-layer</topic><topic>Field effect transistors</topic><topic>H2S detection</topic><topic>Metal oxides</topic><topic>Metal-oxide</topic><topic>Nanoparticles</topic><topic>OFETs</topic><topic>Semiconductor devices</topic><topic>Sensor</topic><topic>Sensors</topic><topic>Threshold voltage</topic><topic>Tin dioxide</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surya, Sandeep G.</creatorcontrib><creatorcontrib>Ashwath, B.S. Narayan</creatorcontrib><creatorcontrib>Mishra, Sushma</creatorcontrib><creatorcontrib>A.R.B., Karthik</creatorcontrib><creatorcontrib>Sastry, A.B.</creatorcontrib><creatorcontrib>B.L.V., Prasad</creatorcontrib><creatorcontrib>Rangappa, Dinesh</creatorcontrib><creatorcontrib>Rao, V. Ramgopal</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surya, Sandeep G.</au><au>Ashwath, B.S. Narayan</au><au>Mishra, Sushma</au><au>A.R.B., Karthik</au><au>Sastry, A.B.</au><au>B.L.V., Prasad</au><au>Rangappa, Dinesh</au><au>Rao, V. Ramgopal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H2S detection using low-cost SnO2 nano-particle Bi-layer OFETs</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>235</volume><spage>378</spage><epage>385</epage><pages>378-385</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>In this article, a unique platform with an organic field-effect transistor (OFET) integrated with metal oxide nanoparticles for sensing of H2S gas is presented. Metal oxide nanoparticles such as SnO2 and ZnO synthesized using herbal techniques were used in the fabrication of OFETs using a bi-layer technique. The as-synthesized nanoparticles were characterized by Field Effect Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD) and UV–vis Spectroscopy (UV–vis) to establish the material properties. We showed that the SnO2 based OFETs displayed better response for H2S at room temperature (25°C) compared to the OFETs fabricated with ZnO. The characterization of the sensors by using extracted electrical parameters like field-effect mobility (μ), On-Current (Ion), threshold voltage (VT) and saturation current (IDsat) establish the fact that the SnO2 based OFETs detect H2S gas at room temperature. Plausible mechanisms explaining the H2S gas detection by bi-layer film were discussed. On the other hand, the sensitivity of these OFETs against other reducing gases was less.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2016.05.096</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2016-11, Vol.235, p.378-385
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1835623853
source Access via ScienceDirect (Elsevier)
subjects Bi-layer
Field effect transistors
H2S detection
Metal oxides
Metal-oxide
Nanoparticles
OFETs
Semiconductor devices
Sensor
Sensors
Threshold voltage
Tin dioxide
Zinc oxide
title H2S detection using low-cost SnO2 nano-particle Bi-layer OFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H2S%20detection%20using%20low-cost%20SnO2%20nano-particle%20Bi-layer%20OFETs&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Surya,%20Sandeep%20G.&rft.date=2016-11-01&rft.volume=235&rft.spage=378&rft.epage=385&rft.pages=378-385&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2016.05.096&rft_dat=%3Cproquest_cross%3E1835623853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835623853&rft_id=info:pmid/&rft_els_id=S092540051630781X&rfr_iscdi=true