Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer

We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2016-09, Vol.10 (6), p.1053-1060
Hauptverfasser: Rosenberg, Gili, Haghnegahdar, Poya, Goddard, Phil, Carr, Peter, Kesheng Wu, Lopez de Prado, Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1060
container_issue 6
container_start_page 1053
container_title IEEE journal of selected topics in signal processing
container_volume 10
creator Rosenberg, Gili
Haghnegahdar, Poya
Goddard, Phil
Carr, Peter
Kesheng Wu
Lopez de Prado, Marcos
description We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.
doi_str_mv 10.1109/JSTSP.2016.2574703
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835622332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7482755</ieee_id><sourcerecordid>4147271691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-df77b6fd9c40dd3ea0f58d2533b9171f975c4a91e385ebb2c08a65147247a67b3</originalsourceid><addsrcrecordid>eNpdkUtP6zAQRi10keAW_gBsIu6GTYrHjzhZIsRTSIBa1pbjTCBVGhfbQeq_x6HoLljNyD6f5ZlDyAnQOQCtLh4Wy8XznFEo5kwqoSjfI4dQCcipKMWfqecsF1LyA_I3hBWlUhUgDsntwvWf3fCWxXfMnjaxW5s-W3rTTGeprtBG57fZs3d1j-vsNUwXJnsZzRDHdXY5DGh69EdkvzV9wOOfOiOvN9fLq7v88en2_uryMbcSRMybVqm6aJvKCto0HA1tZdkwyXldgYK2UtIKUwHyUmJdM0tLU6SkYkKZQtV8Rs5277oQOx1sF9G-W5d-YaMGySSk2WfkfAdtvPsYMUS97oLFvjcDujFoKLksGOOcJfTfL3TlRj-kERIFwJkqKpkotqOsdyF4bPXGp035rQaqJwH6W4CeBOgfASl0ugt1iPg_oETJVPLwBXLGgAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811327695</pqid></control><display><type>article</type><title>Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer</title><source>IEEE Electronic Library (IEL)</source><creator>Rosenberg, Gili ; Haghnegahdar, Poya ; Goddard, Phil ; Carr, Peter ; Kesheng Wu ; Lopez de Prado, Marcos</creator><creatorcontrib>Rosenberg, Gili ; Haghnegahdar, Poya ; Goddard, Phil ; Carr, Peter ; Kesheng Wu ; Lopez de Prado, Marcos ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2016.2574703</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annealing ; Computer programs ; Covariance matrices ; Inversions ; Markets ; Mathematical models ; MATHEMATICS AND COMPUTING ; Optimal trading trajectory ; Optimization ; Portfolio management ; portfolio optimization ; Portfolios ; quantum annealing ; Signal processing ; Software ; Special issues and sections ; Trajectory</subject><ispartof>IEEE journal of selected topics in signal processing, 2016-09, Vol.10 (6), p.1053-1060</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-df77b6fd9c40dd3ea0f58d2533b9171f975c4a91e385ebb2c08a65147247a67b3</citedby><cites>FETCH-LOGICAL-c514t-df77b6fd9c40dd3ea0f58d2533b9171f975c4a91e385ebb2c08a65147247a67b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7482755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7482755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1525170$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenberg, Gili</creatorcontrib><creatorcontrib>Haghnegahdar, Poya</creatorcontrib><creatorcontrib>Goddard, Phil</creatorcontrib><creatorcontrib>Carr, Peter</creatorcontrib><creatorcontrib>Kesheng Wu</creatorcontrib><creatorcontrib>Lopez de Prado, Marcos</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.</description><subject>Annealing</subject><subject>Computer programs</subject><subject>Covariance matrices</subject><subject>Inversions</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Optimal trading trajectory</subject><subject>Optimization</subject><subject>Portfolio management</subject><subject>portfolio optimization</subject><subject>Portfolios</subject><subject>quantum annealing</subject><subject>Signal processing</subject><subject>Software</subject><subject>Special issues and sections</subject><subject>Trajectory</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtP6zAQRi10keAW_gBsIu6GTYrHjzhZIsRTSIBa1pbjTCBVGhfbQeq_x6HoLljNyD6f5ZlDyAnQOQCtLh4Wy8XznFEo5kwqoSjfI4dQCcipKMWfqecsF1LyA_I3hBWlUhUgDsntwvWf3fCWxXfMnjaxW5s-W3rTTGeprtBG57fZs3d1j-vsNUwXJnsZzRDHdXY5DGh69EdkvzV9wOOfOiOvN9fLq7v88en2_uryMbcSRMybVqm6aJvKCto0HA1tZdkwyXldgYK2UtIKUwHyUmJdM0tLU6SkYkKZQtV8Rs5277oQOx1sF9G-W5d-YaMGySSk2WfkfAdtvPsYMUS97oLFvjcDujFoKLksGOOcJfTfL3TlRj-kERIFwJkqKpkotqOsdyF4bPXGp035rQaqJwH6W4CeBOgfASl0ugt1iPg_oETJVPLwBXLGgAw</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Rosenberg, Gili</creator><creator>Haghnegahdar, Poya</creator><creator>Goddard, Phil</creator><creator>Carr, Peter</creator><creator>Kesheng Wu</creator><creator>Lopez de Prado, Marcos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160901</creationdate><title>Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer</title><author>Rosenberg, Gili ; Haghnegahdar, Poya ; Goddard, Phil ; Carr, Peter ; Kesheng Wu ; Lopez de Prado, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-df77b6fd9c40dd3ea0f58d2533b9171f975c4a91e385ebb2c08a65147247a67b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Computer programs</topic><topic>Covariance matrices</topic><topic>Inversions</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Optimal trading trajectory</topic><topic>Optimization</topic><topic>Portfolio management</topic><topic>portfolio optimization</topic><topic>Portfolios</topic><topic>quantum annealing</topic><topic>Signal processing</topic><topic>Software</topic><topic>Special issues and sections</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenberg, Gili</creatorcontrib><creatorcontrib>Haghnegahdar, Poya</creatorcontrib><creatorcontrib>Goddard, Phil</creatorcontrib><creatorcontrib>Carr, Peter</creatorcontrib><creatorcontrib>Kesheng Wu</creatorcontrib><creatorcontrib>Lopez de Prado, Marcos</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rosenberg, Gili</au><au>Haghnegahdar, Poya</au><au>Goddard, Phil</au><au>Carr, Peter</au><au>Kesheng Wu</au><au>Lopez de Prado, Marcos</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>1053</spage><epage>1060</epage><pages>1053-1060</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2016.2574703</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2016-09, Vol.10 (6), p.1053-1060
issn 1932-4553
1941-0484
language eng
recordid cdi_proquest_miscellaneous_1835622332
source IEEE Electronic Library (IEL)
subjects Annealing
Computer programs
Covariance matrices
Inversions
Markets
Mathematical models
MATHEMATICS AND COMPUTING
Optimal trading trajectory
Optimization
Portfolio management
portfolio optimization
Portfolios
quantum annealing
Signal processing
Software
Special issues and sections
Trajectory
title Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Optimal%20Trading%20Trajectory%20Problem%20Using%20a%20Quantum%20Annealer&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Rosenberg,%20Gili&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2016-09-01&rft.volume=10&rft.issue=6&rft.spage=1053&rft.epage=1060&rft.pages=1053-1060&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2016.2574703&rft_dat=%3Cproquest_RIE%3E4147271691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811327695&rft_id=info:pmid/&rft_ieee_id=7482755&rfr_iscdi=true