Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer
We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2016-09, Vol.10 (6), p.1053-1060 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1060 |
---|---|
container_issue | 6 |
container_start_page | 1053 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 10 |
creator | Rosenberg, Gili Haghnegahdar, Poya Goddard, Phil Carr, Peter Kesheng Wu Lopez de Prado, Marcos |
description | We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques. |
doi_str_mv | 10.1109/JSTSP.2016.2574703 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835622332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7482755</ieee_id><sourcerecordid>4147271691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-df77b6fd9c40dd3ea0f58d2533b9171f975c4a91e385ebb2c08a65147247a67b3</originalsourceid><addsrcrecordid>eNpdkUtP6zAQRi10keAW_gBsIu6GTYrHjzhZIsRTSIBa1pbjTCBVGhfbQeq_x6HoLljNyD6f5ZlDyAnQOQCtLh4Wy8XznFEo5kwqoSjfI4dQCcipKMWfqecsF1LyA_I3hBWlUhUgDsntwvWf3fCWxXfMnjaxW5s-W3rTTGeprtBG57fZs3d1j-vsNUwXJnsZzRDHdXY5DGh69EdkvzV9wOOfOiOvN9fLq7v88en2_uryMbcSRMybVqm6aJvKCto0HA1tZdkwyXldgYK2UtIKUwHyUmJdM0tLU6SkYkKZQtV8Rs5277oQOx1sF9G-W5d-YaMGySSk2WfkfAdtvPsYMUS97oLFvjcDujFoKLksGOOcJfTfL3TlRj-kERIFwJkqKpkotqOsdyF4bPXGp035rQaqJwH6W4CeBOgfASl0ugt1iPg_oETJVPLwBXLGgAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811327695</pqid></control><display><type>article</type><title>Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer</title><source>IEEE Electronic Library (IEL)</source><creator>Rosenberg, Gili ; Haghnegahdar, Poya ; Goddard, Phil ; Carr, Peter ; Kesheng Wu ; Lopez de Prado, Marcos</creator><creatorcontrib>Rosenberg, Gili ; Haghnegahdar, Poya ; Goddard, Phil ; Carr, Peter ; Kesheng Wu ; Lopez de Prado, Marcos ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2016.2574703</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annealing ; Computer programs ; Covariance matrices ; Inversions ; Markets ; Mathematical models ; MATHEMATICS AND COMPUTING ; Optimal trading trajectory ; Optimization ; Portfolio management ; portfolio optimization ; Portfolios ; quantum annealing ; Signal processing ; Software ; Special issues and sections ; Trajectory</subject><ispartof>IEEE journal of selected topics in signal processing, 2016-09, Vol.10 (6), p.1053-1060</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-df77b6fd9c40dd3ea0f58d2533b9171f975c4a91e385ebb2c08a65147247a67b3</citedby><cites>FETCH-LOGICAL-c514t-df77b6fd9c40dd3ea0f58d2533b9171f975c4a91e385ebb2c08a65147247a67b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7482755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7482755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1525170$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenberg, Gili</creatorcontrib><creatorcontrib>Haghnegahdar, Poya</creatorcontrib><creatorcontrib>Goddard, Phil</creatorcontrib><creatorcontrib>Carr, Peter</creatorcontrib><creatorcontrib>Kesheng Wu</creatorcontrib><creatorcontrib>Lopez de Prado, Marcos</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.</description><subject>Annealing</subject><subject>Computer programs</subject><subject>Covariance matrices</subject><subject>Inversions</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Optimal trading trajectory</subject><subject>Optimization</subject><subject>Portfolio management</subject><subject>portfolio optimization</subject><subject>Portfolios</subject><subject>quantum annealing</subject><subject>Signal processing</subject><subject>Software</subject><subject>Special issues and sections</subject><subject>Trajectory</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUtP6zAQRi10keAW_gBsIu6GTYrHjzhZIsRTSIBa1pbjTCBVGhfbQeq_x6HoLljNyD6f5ZlDyAnQOQCtLh4Wy8XznFEo5kwqoSjfI4dQCcipKMWfqecsF1LyA_I3hBWlUhUgDsntwvWf3fCWxXfMnjaxW5s-W3rTTGeprtBG57fZs3d1j-vsNUwXJnsZzRDHdXY5DGh69EdkvzV9wOOfOiOvN9fLq7v88en2_uryMbcSRMybVqm6aJvKCto0HA1tZdkwyXldgYK2UtIKUwHyUmJdM0tLU6SkYkKZQtV8Rs5277oQOx1sF9G-W5d-YaMGySSk2WfkfAdtvPsYMUS97oLFvjcDujFoKLksGOOcJfTfL3TlRj-kERIFwJkqKpkotqOsdyF4bPXGp035rQaqJwH6W4CeBOgfASl0ugt1iPg_oETJVPLwBXLGgAw</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Rosenberg, Gili</creator><creator>Haghnegahdar, Poya</creator><creator>Goddard, Phil</creator><creator>Carr, Peter</creator><creator>Kesheng Wu</creator><creator>Lopez de Prado, Marcos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160901</creationdate><title>Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer</title><author>Rosenberg, Gili ; Haghnegahdar, Poya ; Goddard, Phil ; Carr, Peter ; Kesheng Wu ; Lopez de Prado, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-df77b6fd9c40dd3ea0f58d2533b9171f975c4a91e385ebb2c08a65147247a67b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Computer programs</topic><topic>Covariance matrices</topic><topic>Inversions</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Optimal trading trajectory</topic><topic>Optimization</topic><topic>Portfolio management</topic><topic>portfolio optimization</topic><topic>Portfolios</topic><topic>quantum annealing</topic><topic>Signal processing</topic><topic>Software</topic><topic>Special issues and sections</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenberg, Gili</creatorcontrib><creatorcontrib>Haghnegahdar, Poya</creatorcontrib><creatorcontrib>Goddard, Phil</creatorcontrib><creatorcontrib>Carr, Peter</creatorcontrib><creatorcontrib>Kesheng Wu</creatorcontrib><creatorcontrib>Lopez de Prado, Marcos</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rosenberg, Gili</au><au>Haghnegahdar, Poya</au><au>Goddard, Phil</au><au>Carr, Peter</au><au>Kesheng Wu</au><au>Lopez de Prado, Marcos</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>10</volume><issue>6</issue><spage>1053</spage><epage>1060</epage><pages>1053-1060</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2016.2574703</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2016-09, Vol.10 (6), p.1053-1060 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835622332 |
source | IEEE Electronic Library (IEL) |
subjects | Annealing Computer programs Covariance matrices Inversions Markets Mathematical models MATHEMATICS AND COMPUTING Optimal trading trajectory Optimization Portfolio management portfolio optimization Portfolios quantum annealing Signal processing Software Special issues and sections Trajectory |
title | Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Optimal%20Trading%20Trajectory%20Problem%20Using%20a%20Quantum%20Annealer&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Rosenberg,%20Gili&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2016-09-01&rft.volume=10&rft.issue=6&rft.spage=1053&rft.epage=1060&rft.pages=1053-1060&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2016.2574703&rft_dat=%3Cproquest_RIE%3E4147271691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811327695&rft_id=info:pmid/&rft_ieee_id=7482755&rfr_iscdi=true |