New rotational integrals in space forms, with an application to surface area estimation

A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more mana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applications of mathematics (Prague) 2016-08, Vol.61 (4), p.489-501
Hauptverfasser: Gual-Arnau, Ximo, Cruz-Orive, Luis M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue 4
container_start_page 489
container_title Applications of mathematics (Prague)
container_volume 61
creator Gual-Arnau, Ximo
Cruz-Orive, Luis M.
description A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.
doi_str_mv 10.1007/s10492-016-0143-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835621829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835621829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-a65a72f7227d40c15b0e811aca031f8223d1957d73d3341006a6bcdf5cdea16d3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BLx6sziRt0h5l8R8selE8hmyarl26TU1aFr-96daDCB6GGZjfvOE9Qs4RrhFA3gSEtGAJoIiV8qQ4IDPMJEsKhOKQzCAXLJFFCsfkJIQNABQiz2fk_dnuqHe97mvX6obWbW_XXjchTjR02lhaOb8NV3RX9x9Ut1R3XVObPU97R8Pgq5HS3mpqQ19v96tTclRFFXv20-fk7f7udfGYLF8enha3y8SkgvWJFpmWrJKMyTIFg9kKbI6ojQaOVc4YL7HIZCl5yXkanQotVqasMlNajaLkc3I56XbefQ7xv9rWwdim0a11Q1CY80wwzFkR0Ys_6MYNPpoeKUQELgAihRNlvAvB20p1PnryXwpBjVGrKWoVo1Zj1GpUZtNNiGy7tv6X8r9H35LQgJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811103600</pqid></control><display><type>article</type><title>New rotational integrals in space forms, with an application to surface area estimation</title><source>Free E-Journal (出版社公開部分のみ)</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gual-Arnau, Ximo ; Cruz-Orive, Luis M.</creator><creatorcontrib>Gual-Arnau, Ximo ; Cruz-Orive, Luis M.</creatorcontrib><description>A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.1007/s10492-016-0143-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Applications of Mathematics ; Classical and Continuum Physics ; Constants ; Estimating techniques ; Estimators ; Euclidean space ; Formulas (mathematics) ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Optimization ; Smooth boundaries ; Stereology ; Studies ; Surface area ; Theoretical ; Topological manifolds</subject><ispartof>Applications of mathematics (Prague), 2016-08, Vol.61 (4), p.489-501</ispartof><rights>Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-a65a72f7227d40c15b0e811aca031f8223d1957d73d3341006a6bcdf5cdea16d3</citedby><cites>FETCH-LOGICAL-c462t-a65a72f7227d40c15b0e811aca031f8223d1957d73d3341006a6bcdf5cdea16d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10492-016-0143-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10492-016-0143-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gual-Arnau, Ximo</creatorcontrib><creatorcontrib>Cruz-Orive, Luis M.</creatorcontrib><title>New rotational integrals in space forms, with an application to surface area estimation</title><title>Applications of mathematics (Prague)</title><addtitle>Appl Math</addtitle><description>A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Constants</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Euclidean space</subject><subject>Formulas (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Smooth boundaries</subject><subject>Stereology</subject><subject>Studies</subject><subject>Surface area</subject><subject>Theoretical</subject><subject>Topological manifolds</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BLx6sziRt0h5l8R8selE8hmyarl26TU1aFr-96daDCB6GGZjfvOE9Qs4RrhFA3gSEtGAJoIiV8qQ4IDPMJEsKhOKQzCAXLJFFCsfkJIQNABQiz2fk_dnuqHe97mvX6obWbW_XXjchTjR02lhaOb8NV3RX9x9Ut1R3XVObPU97R8Pgq5HS3mpqQ19v96tTclRFFXv20-fk7f7udfGYLF8enha3y8SkgvWJFpmWrJKMyTIFg9kKbI6ojQaOVc4YL7HIZCl5yXkanQotVqasMlNajaLkc3I56XbefQ7xv9rWwdim0a11Q1CY80wwzFkR0Ys_6MYNPpoeKUQELgAihRNlvAvB20p1PnryXwpBjVGrKWoVo1Zj1GpUZtNNiGy7tv6X8r9H35LQgJA</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Gual-Arnau, Ximo</creator><creator>Cruz-Orive, Luis M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160801</creationdate><title>New rotational integrals in space forms, with an application to surface area estimation</title><author>Gual-Arnau, Ximo ; Cruz-Orive, Luis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-a65a72f7227d40c15b0e811aca031f8223d1957d73d3341006a6bcdf5cdea16d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Constants</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Euclidean space</topic><topic>Formulas (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Smooth boundaries</topic><topic>Stereology</topic><topic>Studies</topic><topic>Surface area</topic><topic>Theoretical</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gual-Arnau, Ximo</creatorcontrib><creatorcontrib>Cruz-Orive, Luis M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Applications of mathematics (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gual-Arnau, Ximo</au><au>Cruz-Orive, Luis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New rotational integrals in space forms, with an application to surface area estimation</atitle><jtitle>Applications of mathematics (Prague)</jtitle><stitle>Appl Math</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>61</volume><issue>4</issue><spage>489</spage><epage>501</epage><pages>489-501</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10492-016-0143-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0862-7940
ispartof Applications of mathematics (Prague), 2016-08, Vol.61 (4), p.489-501
issn 0862-7940
1572-9109
language eng
recordid cdi_proquest_miscellaneous_1835621829
source Free E-Journal (出版社公開部分のみ); SpringerLink Journals - AutoHoldings
subjects Analysis
Applications of Mathematics
Classical and Continuum Physics
Constants
Estimating techniques
Estimators
Euclidean space
Formulas (mathematics)
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Optimization
Smooth boundaries
Stereology
Studies
Surface area
Theoretical
Topological manifolds
title New rotational integrals in space forms, with an application to surface area estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20rotational%20integrals%20in%20space%20forms,%20with%20an%20application%20to%20surface%20area%20estimation&rft.jtitle=Applications%20of%20mathematics%20(Prague)&rft.au=Gual-Arnau,%20Ximo&rft.date=2016-08-01&rft.volume=61&rft.issue=4&rft.spage=489&rft.epage=501&rft.pages=489-501&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.1007/s10492-016-0143-9&rft_dat=%3Cproquest_cross%3E1835621829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811103600&rft_id=info:pmid/&rfr_iscdi=true