New rotational integrals in space forms, with an application to surface area estimation
A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more mana...
Gespeichert in:
Veröffentlicht in: | Applications of mathematics (Prague) 2016-08, Vol.61 (4), p.489-501 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 501 |
---|---|
container_issue | 4 |
container_start_page | 489 |
container_title | Applications of mathematics (Prague) |
container_volume | 61 |
creator | Gual-Arnau, Ximo Cruz-Orive, Luis M. |
description | A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary. |
doi_str_mv | 10.1007/s10492-016-0143-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835621829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835621829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-a65a72f7227d40c15b0e811aca031f8223d1957d73d3341006a6bcdf5cdea16d3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BLx6sziRt0h5l8R8selE8hmyarl26TU1aFr-96daDCB6GGZjfvOE9Qs4RrhFA3gSEtGAJoIiV8qQ4IDPMJEsKhOKQzCAXLJFFCsfkJIQNABQiz2fk_dnuqHe97mvX6obWbW_XXjchTjR02lhaOb8NV3RX9x9Ut1R3XVObPU97R8Pgq5HS3mpqQ19v96tTclRFFXv20-fk7f7udfGYLF8enha3y8SkgvWJFpmWrJKMyTIFg9kKbI6ojQaOVc4YL7HIZCl5yXkanQotVqasMlNajaLkc3I56XbefQ7xv9rWwdim0a11Q1CY80wwzFkR0Ys_6MYNPpoeKUQELgAihRNlvAvB20p1PnryXwpBjVGrKWoVo1Zj1GpUZtNNiGy7tv6X8r9H35LQgJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811103600</pqid></control><display><type>article</type><title>New rotational integrals in space forms, with an application to surface area estimation</title><source>Free E-Journal (出版社公開部分のみ)</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gual-Arnau, Ximo ; Cruz-Orive, Luis M.</creator><creatorcontrib>Gual-Arnau, Ximo ; Cruz-Orive, Luis M.</creatorcontrib><description>A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.1007/s10492-016-0143-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Applications of Mathematics ; Classical and Continuum Physics ; Constants ; Estimating techniques ; Estimators ; Euclidean space ; Formulas (mathematics) ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Optimization ; Smooth boundaries ; Stereology ; Studies ; Surface area ; Theoretical ; Topological manifolds</subject><ispartof>Applications of mathematics (Prague), 2016-08, Vol.61 (4), p.489-501</ispartof><rights>Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-a65a72f7227d40c15b0e811aca031f8223d1957d73d3341006a6bcdf5cdea16d3</citedby><cites>FETCH-LOGICAL-c462t-a65a72f7227d40c15b0e811aca031f8223d1957d73d3341006a6bcdf5cdea16d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10492-016-0143-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10492-016-0143-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gual-Arnau, Ximo</creatorcontrib><creatorcontrib>Cruz-Orive, Luis M.</creatorcontrib><title>New rotational integrals in space forms, with an application to surface area estimation</title><title>Applications of mathematics (Prague)</title><addtitle>Appl Math</addtitle><description>A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Constants</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Euclidean space</subject><subject>Formulas (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Smooth boundaries</subject><subject>Stereology</subject><subject>Studies</subject><subject>Surface area</subject><subject>Theoretical</subject><subject>Topological manifolds</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BLx6sziRt0h5l8R8selE8hmyarl26TU1aFr-96daDCB6GGZjfvOE9Qs4RrhFA3gSEtGAJoIiV8qQ4IDPMJEsKhOKQzCAXLJFFCsfkJIQNABQiz2fk_dnuqHe97mvX6obWbW_XXjchTjR02lhaOb8NV3RX9x9Ut1R3XVObPU97R8Pgq5HS3mpqQ19v96tTclRFFXv20-fk7f7udfGYLF8enha3y8SkgvWJFpmWrJKMyTIFg9kKbI6ojQaOVc4YL7HIZCl5yXkanQotVqasMlNajaLkc3I56XbefQ7xv9rWwdim0a11Q1CY80wwzFkR0Ys_6MYNPpoeKUQELgAihRNlvAvB20p1PnryXwpBjVGrKWoVo1Zj1GpUZtNNiGy7tv6X8r9H35LQgJA</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Gual-Arnau, Ximo</creator><creator>Cruz-Orive, Luis M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160801</creationdate><title>New rotational integrals in space forms, with an application to surface area estimation</title><author>Gual-Arnau, Ximo ; Cruz-Orive, Luis M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-a65a72f7227d40c15b0e811aca031f8223d1957d73d3341006a6bcdf5cdea16d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Constants</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Euclidean space</topic><topic>Formulas (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Smooth boundaries</topic><topic>Stereology</topic><topic>Studies</topic><topic>Surface area</topic><topic>Theoretical</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gual-Arnau, Ximo</creatorcontrib><creatorcontrib>Cruz-Orive, Luis M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Applications of mathematics (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gual-Arnau, Ximo</au><au>Cruz-Orive, Luis M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New rotational integrals in space forms, with an application to surface area estimation</atitle><jtitle>Applications of mathematics (Prague)</jtitle><stitle>Appl Math</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>61</volume><issue>4</issue><spage>489</spage><epage>501</epage><pages>489-501</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10492-016-0143-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0862-7940 |
ispartof | Applications of mathematics (Prague), 2016-08, Vol.61 (4), p.489-501 |
issn | 0862-7940 1572-9109 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835621829 |
source | Free E-Journal (出版社公開部分のみ); SpringerLink Journals - AutoHoldings |
subjects | Analysis Applications of Mathematics Classical and Continuum Physics Constants Estimating techniques Estimators Euclidean space Formulas (mathematics) Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Optimization Smooth boundaries Stereology Studies Surface area Theoretical Topological manifolds |
title | New rotational integrals in space forms, with an application to surface area estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20rotational%20integrals%20in%20space%20forms,%20with%20an%20application%20to%20surface%20area%20estimation&rft.jtitle=Applications%20of%20mathematics%20(Prague)&rft.au=Gual-Arnau,%20Ximo&rft.date=2016-08-01&rft.volume=61&rft.issue=4&rft.spage=489&rft.epage=501&rft.pages=489-501&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.1007/s10492-016-0143-9&rft_dat=%3Cproquest_cross%3E1835621829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811103600&rft_id=info:pmid/&rfr_iscdi=true |