Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects

Transmembrane pores play an important role in various biophysical processes such as membrane permeation, membrane fusion, and antimicrobial peptide activity. In principal, all-atom molecular dynamics (MD) simulations provide an accurate model of pore formation in lipid membranes. However, the free e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2016-07, Vol.12 (7), p.3261-3269
Hauptverfasser: Awasthi, Neha, Hub, Jochen S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3269
container_issue 7
container_start_page 3261
container_title Journal of chemical theory and computation
container_volume 12
creator Awasthi, Neha
Hub, Jochen S
description Transmembrane pores play an important role in various biophysical processes such as membrane permeation, membrane fusion, and antimicrobial peptide activity. In principal, all-atom molecular dynamics (MD) simulations provide an accurate model of pore formation in lipid membranes. However, the free energy landscape of transmembrane pore formation remains poorly understood, partly because potential of mean force (PMF) calculations of pore formation strongly depend on the choice of the reaction coordinate. In this study, we used umbrella sampling to compute PMFs for pore formation using three different reaction coordinates, namely, (i) a coordinate that steers the lipids in the lateral direction away from the pore center, (ii) the distance of a single lipid phosphate group from the membrane center, and (iii) the average water density inside a membrane-spanning cylinder. Our results show that while the three reaction coordinates efficiently form pores in membranes, they suffer from strong hysteresis between pore-opening and pore-closing simulations, suggesting that they do not restrain the systems close to the transition state for pore formation. The two reaction coordinates that act via restraining the lipids lead to more pronounced hysteresis compared with the coordinate acting on the water molecules. By comparing PMFs computed from membranes with different numbers of lipids, we observed significant artifacts from the periodic boundary conditions in small simulation systems. Further analysis suggests that the formation and disruption of a continuous hydrogen-bonding network across the membrane corresponds to the transition state for pore formation. Our study provides molecular insights into the critical steps of transmembrane pore formation, and it may guide the development of efficient reaction coordinates for pore formation.
doi_str_mv 10.1021/acs.jctc.6b00369
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835618218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835618218</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-37d9943623d9cdd616bb76ca1658e658ccaf9a7070044237372484839bc9f813</originalsourceid><addsrcrecordid>eNqFkb1v2zAQxYkiReO63TsVHDNYDr9EitkCw24KOGiQZBco6lQwsEiXlIK4f33pj2YLMhBH8n7vAXcPoW-UzClh9NLYNH-yg53LhhAu9Qc0oaXQhZZMnr3eaXWOPqf0lBEuGP-EzplipVBCTNDLg-vHjRlc8AmHDt-FCHgVYn_4ws7jtdu6Ft9C30TjIV3hezD20FyEEFvnzQBplh_-GeJv8BZm-GaXBoiQXG4Y3-KV826A4sH9BbzsOrBD-oI-dmaT4OupTtHjavm4uCnWv378XFyvCyN4ORRctVoLLhlvtW1bSWXTKGkNlWUF-VhrOm0UUYSIPJviiolKVFw3VncV5VN0cbTdxvBnhDTUvUsWNps8SxhTTSte5gWxXN9HCVeaM1pmlBxRG0NKEbp6G11v4q6mpN4nU-dk6n0y9SmZLPl-ch-bHtpXwf8oMjA7AgdpGKPPa3nb7x_ZJJmF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803793215</pqid></control><display><type>article</type><title>Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects</title><source>MEDLINE</source><source>ACS Publications</source><creator>Awasthi, Neha ; Hub, Jochen S</creator><creatorcontrib>Awasthi, Neha ; Hub, Jochen S</creatorcontrib><description>Transmembrane pores play an important role in various biophysical processes such as membrane permeation, membrane fusion, and antimicrobial peptide activity. In principal, all-atom molecular dynamics (MD) simulations provide an accurate model of pore formation in lipid membranes. However, the free energy landscape of transmembrane pore formation remains poorly understood, partly because potential of mean force (PMF) calculations of pore formation strongly depend on the choice of the reaction coordinate. In this study, we used umbrella sampling to compute PMFs for pore formation using three different reaction coordinates, namely, (i) a coordinate that steers the lipids in the lateral direction away from the pore center, (ii) the distance of a single lipid phosphate group from the membrane center, and (iii) the average water density inside a membrane-spanning cylinder. Our results show that while the three reaction coordinates efficiently form pores in membranes, they suffer from strong hysteresis between pore-opening and pore-closing simulations, suggesting that they do not restrain the systems close to the transition state for pore formation. The two reaction coordinates that act via restraining the lipids lead to more pronounced hysteresis compared with the coordinate acting on the water molecules. By comparing PMFs computed from membranes with different numbers of lipids, we observed significant artifacts from the periodic boundary conditions in small simulation systems. Further analysis suggests that the formation and disruption of a continuous hydrogen-bonding network across the membrane corresponds to the transition state for pore formation. Our study provides molecular insights into the critical steps of transmembrane pore formation, and it may guide the development of efficient reaction coordinates for pore formation.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.6b00369</identifier><identifier>PMID: 27254744</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Computer Simulation ; Cylinders ; Hysteresis ; Lipid Bilayers - chemistry ; Lipids ; Mathematical models ; Membranes ; Molecular Dynamics Simulation ; Pore formation ; Porosity</subject><ispartof>Journal of chemical theory and computation, 2016-07, Vol.12 (7), p.3261-3269</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-37d9943623d9cdd616bb76ca1658e658ccaf9a7070044237372484839bc9f813</citedby><cites>FETCH-LOGICAL-a435t-37d9943623d9cdd616bb76ca1658e658ccaf9a7070044237372484839bc9f813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.6b00369$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.6b00369$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27254744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Awasthi, Neha</creatorcontrib><creatorcontrib>Hub, Jochen S</creatorcontrib><title>Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Transmembrane pores play an important role in various biophysical processes such as membrane permeation, membrane fusion, and antimicrobial peptide activity. In principal, all-atom molecular dynamics (MD) simulations provide an accurate model of pore formation in lipid membranes. However, the free energy landscape of transmembrane pore formation remains poorly understood, partly because potential of mean force (PMF) calculations of pore formation strongly depend on the choice of the reaction coordinate. In this study, we used umbrella sampling to compute PMFs for pore formation using three different reaction coordinates, namely, (i) a coordinate that steers the lipids in the lateral direction away from the pore center, (ii) the distance of a single lipid phosphate group from the membrane center, and (iii) the average water density inside a membrane-spanning cylinder. Our results show that while the three reaction coordinates efficiently form pores in membranes, they suffer from strong hysteresis between pore-opening and pore-closing simulations, suggesting that they do not restrain the systems close to the transition state for pore formation. The two reaction coordinates that act via restraining the lipids lead to more pronounced hysteresis compared with the coordinate acting on the water molecules. By comparing PMFs computed from membranes with different numbers of lipids, we observed significant artifacts from the periodic boundary conditions in small simulation systems. Further analysis suggests that the formation and disruption of a continuous hydrogen-bonding network across the membrane corresponds to the transition state for pore formation. Our study provides molecular insights into the critical steps of transmembrane pore formation, and it may guide the development of efficient reaction coordinates for pore formation.</description><subject>Computer Simulation</subject><subject>Cylinders</subject><subject>Hysteresis</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Molecular Dynamics Simulation</subject><subject>Pore formation</subject><subject>Porosity</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1v2zAQxYkiReO63TsVHDNYDr9EitkCw24KOGiQZBco6lQwsEiXlIK4f33pj2YLMhBH8n7vAXcPoW-UzClh9NLYNH-yg53LhhAu9Qc0oaXQhZZMnr3eaXWOPqf0lBEuGP-EzplipVBCTNDLg-vHjRlc8AmHDt-FCHgVYn_4ws7jtdu6Ft9C30TjIV3hezD20FyEEFvnzQBplh_-GeJv8BZm-GaXBoiQXG4Y3-KV826A4sH9BbzsOrBD-oI-dmaT4OupTtHjavm4uCnWv378XFyvCyN4ORRctVoLLhlvtW1bSWXTKGkNlWUF-VhrOm0UUYSIPJviiolKVFw3VncV5VN0cbTdxvBnhDTUvUsWNps8SxhTTSte5gWxXN9HCVeaM1pmlBxRG0NKEbp6G11v4q6mpN4nU-dk6n0y9SmZLPl-ch-bHtpXwf8oMjA7AgdpGKPPa3nb7x_ZJJmF</recordid><startdate>20160712</startdate><enddate>20160712</enddate><creator>Awasthi, Neha</creator><creator>Hub, Jochen S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160712</creationdate><title>Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects</title><author>Awasthi, Neha ; Hub, Jochen S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-37d9943623d9cdd616bb76ca1658e658ccaf9a7070044237372484839bc9f813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Simulation</topic><topic>Cylinders</topic><topic>Hysteresis</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Molecular Dynamics Simulation</topic><topic>Pore formation</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awasthi, Neha</creatorcontrib><creatorcontrib>Hub, Jochen S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awasthi, Neha</au><au>Hub, Jochen S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2016-07-12</date><risdate>2016</risdate><volume>12</volume><issue>7</issue><spage>3261</spage><epage>3269</epage><pages>3261-3269</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Transmembrane pores play an important role in various biophysical processes such as membrane permeation, membrane fusion, and antimicrobial peptide activity. In principal, all-atom molecular dynamics (MD) simulations provide an accurate model of pore formation in lipid membranes. However, the free energy landscape of transmembrane pore formation remains poorly understood, partly because potential of mean force (PMF) calculations of pore formation strongly depend on the choice of the reaction coordinate. In this study, we used umbrella sampling to compute PMFs for pore formation using three different reaction coordinates, namely, (i) a coordinate that steers the lipids in the lateral direction away from the pore center, (ii) the distance of a single lipid phosphate group from the membrane center, and (iii) the average water density inside a membrane-spanning cylinder. Our results show that while the three reaction coordinates efficiently form pores in membranes, they suffer from strong hysteresis between pore-opening and pore-closing simulations, suggesting that they do not restrain the systems close to the transition state for pore formation. The two reaction coordinates that act via restraining the lipids lead to more pronounced hysteresis compared with the coordinate acting on the water molecules. By comparing PMFs computed from membranes with different numbers of lipids, we observed significant artifacts from the periodic boundary conditions in small simulation systems. Further analysis suggests that the formation and disruption of a continuous hydrogen-bonding network across the membrane corresponds to the transition state for pore formation. Our study provides molecular insights into the critical steps of transmembrane pore formation, and it may guide the development of efficient reaction coordinates for pore formation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27254744</pmid><doi>10.1021/acs.jctc.6b00369</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2016-07, Vol.12 (7), p.3261-3269
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_1835618218
source MEDLINE; ACS Publications
subjects Computer Simulation
Cylinders
Hysteresis
Lipid Bilayers - chemistry
Lipids
Mathematical models
Membranes
Molecular Dynamics Simulation
Pore formation
Porosity
title Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20of%20Pore%20Formation%20in%20Lipid%20Membranes:%20Reaction%20Coordinates,%20Convergence,%20Hysteresis,%20and%20Finite-Size%20Effects&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Awasthi,%20Neha&rft.date=2016-07-12&rft.volume=12&rft.issue=7&rft.spage=3261&rft.epage=3269&rft.pages=3261-3269&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.6b00369&rft_dat=%3Cproquest_cross%3E1835618218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803793215&rft_id=info:pmid/27254744&rfr_iscdi=true