An order insensitive sequential fast covariance intersection fusion algorithm

•The proposed SFCI fusion algorithm can handle the problem of unknown cross-correlation in local estimation errors.•The fusion accuracy of the proposed algorithm is not relevant to the fusion orders, i.e., all fusion nodes can acquire identical result.•The fusion coefficients are straightforward to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2016-11, Vol.367-368, p.28-40
Hauptverfasser: Cong, Jinliang, Li, Yinya, Qi, Guoqing, Sheng, Andong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue
container_start_page 28
container_title Information sciences
container_volume 367-368
creator Cong, Jinliang
Li, Yinya
Qi, Guoqing
Sheng, Andong
description •The proposed SFCI fusion algorithm can handle the problem of unknown cross-correlation in local estimation errors.•The fusion accuracy of the proposed algorithm is not relevant to the fusion orders, i.e., all fusion nodes can acquire identical result.•The fusion coefficients are straightforward to calculate, owing to not require optimizing nonlinear cost function.•The proposed algorithm is computationally efficient and is therefore applicable for use in real-time fusion systems. In this article, data cross-correlation in distributed sensor system is investigated via an order insensitive sequential fast covariance intersection fusion algorithm. Among the existing approaches, the common drawbacks are that the fusion results are sensitive to fusion orders and the computational burden is tremendous due to the optimization of multi-dimensional nonlinear cost function. In order to overcome these drawbacks, a sequential fast covariance intersection (SFCI) algorithm is presented. The new fusion coefficients can be calculated straightforward by taking the reciprocal of the trace of the inverse variances as local fusion coefficients and using an iterative process for fusion step to revise the coefficient weight. Note that the proposed fusion algorithm is consistent, and its accuracy is unrelated to the fusion order of the distributed system. Finally, real radar data and simulation examples are provided to verify the effectiveness of the proposed algorithm.
doi_str_mv 10.1016/j.ins.2016.06.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835616088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025516303929</els_id><sourcerecordid>1835616088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-ecd85b2718e5c21584d45982cc7ea4242aaa48ff021978854118c0ed58d2930d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNsevew6k93sZvFUiv-g4kXPISazmrLd1CQt-O1NqWdh4M3hvWF-j7FrhAoB29t15aZY8bxWkAfwhM1QdrxseY-nbAbAoQQuxDm7iHENAE3XtjP2spgKHyyFIudpii65PRWRvnc0JafHYtAxFcbvdXB6MpRtiUIkk5yfimEXD6LHTx9c-tpcsrNBj5Gu_nTO3h_u35ZP5er18Xm5WJWmriGVZKwUH7xDScJwFLKxjeglN6Yj3fCGa60bOQzAse-kFA2iNEBWSMv7Gmw9ZzfHu9vg86cxqY2LhsZRT-R3UaGsRYstSJmteLSa4GMMNKhtcBsdfhSCOlSn1iqjq0N1CvIA5szdMUOZYe8oqGgcZXrrQiZX1rt_0r_xS3dd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835616088</pqid></control><display><type>article</type><title>An order insensitive sequential fast covariance intersection fusion algorithm</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cong, Jinliang ; Li, Yinya ; Qi, Guoqing ; Sheng, Andong</creator><creatorcontrib>Cong, Jinliang ; Li, Yinya ; Qi, Guoqing ; Sheng, Andong</creatorcontrib><description>•The proposed SFCI fusion algorithm can handle the problem of unknown cross-correlation in local estimation errors.•The fusion accuracy of the proposed algorithm is not relevant to the fusion orders, i.e., all fusion nodes can acquire identical result.•The fusion coefficients are straightforward to calculate, owing to not require optimizing nonlinear cost function.•The proposed algorithm is computationally efficient and is therefore applicable for use in real-time fusion systems. In this article, data cross-correlation in distributed sensor system is investigated via an order insensitive sequential fast covariance intersection fusion algorithm. Among the existing approaches, the common drawbacks are that the fusion results are sensitive to fusion orders and the computational burden is tremendous due to the optimization of multi-dimensional nonlinear cost function. In order to overcome these drawbacks, a sequential fast covariance intersection (SFCI) algorithm is presented. The new fusion coefficients can be calculated straightforward by taking the reciprocal of the trace of the inverse variances as local fusion coefficients and using an iterative process for fusion step to revise the coefficient weight. Note that the proposed fusion algorithm is consistent, and its accuracy is unrelated to the fusion order of the distributed system. Finally, real radar data and simulation examples are provided to verify the effectiveness of the proposed algorithm.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2016.06.001</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Computer simulation ; Consistency ; Covariance ; Distributed fusion ; Intersections ; Inverse ; Mathematical analysis ; Nonlinearity ; Optimization ; Order insensitive ; Unknown cross-covariance</subject><ispartof>Information sciences, 2016-11, Vol.367-368, p.28-40</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-ecd85b2718e5c21584d45982cc7ea4242aaa48ff021978854118c0ed58d2930d3</citedby><cites>FETCH-LOGICAL-c330t-ecd85b2718e5c21584d45982cc7ea4242aaa48ff021978854118c0ed58d2930d3</cites><orcidid>0000-0002-6811-9556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2016.06.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Cong, Jinliang</creatorcontrib><creatorcontrib>Li, Yinya</creatorcontrib><creatorcontrib>Qi, Guoqing</creatorcontrib><creatorcontrib>Sheng, Andong</creatorcontrib><title>An order insensitive sequential fast covariance intersection fusion algorithm</title><title>Information sciences</title><description>•The proposed SFCI fusion algorithm can handle the problem of unknown cross-correlation in local estimation errors.•The fusion accuracy of the proposed algorithm is not relevant to the fusion orders, i.e., all fusion nodes can acquire identical result.•The fusion coefficients are straightforward to calculate, owing to not require optimizing nonlinear cost function.•The proposed algorithm is computationally efficient and is therefore applicable for use in real-time fusion systems. In this article, data cross-correlation in distributed sensor system is investigated via an order insensitive sequential fast covariance intersection fusion algorithm. Among the existing approaches, the common drawbacks are that the fusion results are sensitive to fusion orders and the computational burden is tremendous due to the optimization of multi-dimensional nonlinear cost function. In order to overcome these drawbacks, a sequential fast covariance intersection (SFCI) algorithm is presented. The new fusion coefficients can be calculated straightforward by taking the reciprocal of the trace of the inverse variances as local fusion coefficients and using an iterative process for fusion step to revise the coefficient weight. Note that the proposed fusion algorithm is consistent, and its accuracy is unrelated to the fusion order of the distributed system. Finally, real radar data and simulation examples are provided to verify the effectiveness of the proposed algorithm.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Consistency</subject><subject>Covariance</subject><subject>Distributed fusion</subject><subject>Intersections</subject><subject>Inverse</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Order insensitive</subject><subject>Unknown cross-covariance</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNsevew6k93sZvFUiv-g4kXPISazmrLd1CQt-O1NqWdh4M3hvWF-j7FrhAoB29t15aZY8bxWkAfwhM1QdrxseY-nbAbAoQQuxDm7iHENAE3XtjP2spgKHyyFIudpii65PRWRvnc0JafHYtAxFcbvdXB6MpRtiUIkk5yfimEXD6LHTx9c-tpcsrNBj5Gu_nTO3h_u35ZP5er18Xm5WJWmriGVZKwUH7xDScJwFLKxjeglN6Yj3fCGa60bOQzAse-kFA2iNEBWSMv7Gmw9ZzfHu9vg86cxqY2LhsZRT-R3UaGsRYstSJmteLSa4GMMNKhtcBsdfhSCOlSn1iqjq0N1CvIA5szdMUOZYe8oqGgcZXrrQiZX1rt_0r_xS3dd</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Cong, Jinliang</creator><creator>Li, Yinya</creator><creator>Qi, Guoqing</creator><creator>Sheng, Andong</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6811-9556</orcidid></search><sort><creationdate>20161101</creationdate><title>An order insensitive sequential fast covariance intersection fusion algorithm</title><author>Cong, Jinliang ; Li, Yinya ; Qi, Guoqing ; Sheng, Andong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-ecd85b2718e5c21584d45982cc7ea4242aaa48ff021978854118c0ed58d2930d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Consistency</topic><topic>Covariance</topic><topic>Distributed fusion</topic><topic>Intersections</topic><topic>Inverse</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Order insensitive</topic><topic>Unknown cross-covariance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cong, Jinliang</creatorcontrib><creatorcontrib>Li, Yinya</creatorcontrib><creatorcontrib>Qi, Guoqing</creatorcontrib><creatorcontrib>Sheng, Andong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cong, Jinliang</au><au>Li, Yinya</au><au>Qi, Guoqing</au><au>Sheng, Andong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An order insensitive sequential fast covariance intersection fusion algorithm</atitle><jtitle>Information sciences</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>367-368</volume><spage>28</spage><epage>40</epage><pages>28-40</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>•The proposed SFCI fusion algorithm can handle the problem of unknown cross-correlation in local estimation errors.•The fusion accuracy of the proposed algorithm is not relevant to the fusion orders, i.e., all fusion nodes can acquire identical result.•The fusion coefficients are straightforward to calculate, owing to not require optimizing nonlinear cost function.•The proposed algorithm is computationally efficient and is therefore applicable for use in real-time fusion systems. In this article, data cross-correlation in distributed sensor system is investigated via an order insensitive sequential fast covariance intersection fusion algorithm. Among the existing approaches, the common drawbacks are that the fusion results are sensitive to fusion orders and the computational burden is tremendous due to the optimization of multi-dimensional nonlinear cost function. In order to overcome these drawbacks, a sequential fast covariance intersection (SFCI) algorithm is presented. The new fusion coefficients can be calculated straightforward by taking the reciprocal of the trace of the inverse variances as local fusion coefficients and using an iterative process for fusion step to revise the coefficient weight. Note that the proposed fusion algorithm is consistent, and its accuracy is unrelated to the fusion order of the distributed system. Finally, real radar data and simulation examples are provided to verify the effectiveness of the proposed algorithm.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2016.06.001</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6811-9556</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2016-11, Vol.367-368, p.28-40
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1835616088
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Computer simulation
Consistency
Covariance
Distributed fusion
Intersections
Inverse
Mathematical analysis
Nonlinearity
Optimization
Order insensitive
Unknown cross-covariance
title An order insensitive sequential fast covariance intersection fusion algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T12%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20order%20insensitive%20sequential%20fast%20covariance%20intersection%20fusion%20algorithm&rft.jtitle=Information%20sciences&rft.au=Cong,%20Jinliang&rft.date=2016-11-01&rft.volume=367-368&rft.spage=28&rft.epage=40&rft.pages=28-40&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2016.06.001&rft_dat=%3Cproquest_cross%3E1835616088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835616088&rft_id=info:pmid/&rft_els_id=S0020025516303929&rfr_iscdi=true