Crystallization Driving Force of Supercooled Oxide Liquids

The driving force for crystallization (Δμ) can be calculated by the Gibbs free energy equation, which relies on heat capacity (Cp) data. However, such data may be unavailable, which led several authors to propose new equations to estimate Δμ without Cp. Two relevant expressions are the Turnbull and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied glass science 2016-09, Vol.7 (3), p.262-269
1. Verfasser: Cassar, Daniel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 3
container_start_page 262
container_title International journal of applied glass science
container_volume 7
creator Cassar, Daniel R.
description The driving force for crystallization (Δμ) can be calculated by the Gibbs free energy equation, which relies on heat capacity (Cp) data. However, such data may be unavailable, which led several authors to propose new equations to estimate Δμ without Cp. Two relevant expressions are the Turnbull and Hoffman equations, which are assumed to act as boundaries for the actual value of Δμ. The aim of this work was to test whether this assumption is valid for 65 oxide liquids, including glass formers and reluctant glass‐forming compositions. These equations do not act as boundaries, but the majority of the glass formers do have a driving force within these boundaries. Furthermore, this work tested a Δμ expression proposed by Gutzow and Dobreva that is a generalization of the Turnbull and Hoffman equations. This equation described the actual values of Δμ really well for all compositions with only one additional parameter: a0. Finally, a new expression to estimate a0 was obtained based on the results of this work.
doi_str_mv 10.1111/ijag.12218
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835614351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835614351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4008-15ad3642449d0de0a9482b3a7b5f52d599fb09dfe092818fc93a1dd8b10c50593</originalsourceid><addsrcrecordid>eNp9kEFPwjAUxxejiQS5-AmWeDEmw7523VpvBAUxRA9gSLw0Ze1IcVBomYKf3uGUgwf-l_cOv__Lyy8ILgG1ocqtmctZGzAGdhI0MIohAszj08POkvOg5f0cVSGMJZw1gruu2_mNLArzJTfGLsN7Zz7Mchb2rMt0aPNwVK60y6wttApftkbpcGjWpVH-IjjLZeF163c2g9few7j7GA1f-oNuZxhlMUIsAioVSWIcx1whpZHkMcNTItMpzSlWlPN8irjKNeKYAcszTiQoxaaAMoooJ83gur67cnZdar8RC-MzXRRyqW3pBTBCE4gJhQq9-ofObemW1XcCowTxJK2EHKOAQVrJIiitqJuaypz13ulcrJxZSLcTgMTet9j7Fj--Kxhq-NMUeneEFIOnTv-vE9Ud4zd6e-hI9y6SlKRUTJ77YtSbjFNCsXgj3ymRjlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1817041307</pqid></control><display><type>article</type><title>Crystallization Driving Force of Supercooled Oxide Liquids</title><source>Access via Wiley Online Library</source><creator>Cassar, Daniel R.</creator><creatorcontrib>Cassar, Daniel R.</creatorcontrib><description>The driving force for crystallization (Δμ) can be calculated by the Gibbs free energy equation, which relies on heat capacity (Cp) data. However, such data may be unavailable, which led several authors to propose new equations to estimate Δμ without Cp. Two relevant expressions are the Turnbull and Hoffman equations, which are assumed to act as boundaries for the actual value of Δμ. The aim of this work was to test whether this assumption is valid for 65 oxide liquids, including glass formers and reluctant glass‐forming compositions. These equations do not act as boundaries, but the majority of the glass formers do have a driving force within these boundaries. Furthermore, this work tested a Δμ expression proposed by Gutzow and Dobreva that is a generalization of the Turnbull and Hoffman equations. This equation described the actual values of Δμ really well for all compositions with only one additional parameter: a0. Finally, a new expression to estimate a0 was obtained based on the results of this work.</description><identifier>ISSN: 2041-1286</identifier><identifier>EISSN: 2041-1294</identifier><identifier>DOI: 10.1111/ijag.12218</identifier><language>eng</language><publisher>Westerville: Blackwell Publishing Ltd</publisher><subject>Boundaries ; Composition ; Crystallization ; Estimates ; Free energy ; Gibbs free energy ; Glass ; Glass formation ; Liquids ; Mathematical analysis ; oxide liquids ; Oxides ; thermodynamic driving force</subject><ispartof>International journal of applied glass science, 2016-09, Vol.7 (3), p.262-269</ispartof><rights>2016 The American Ceramic Society and Wiley Periodicals, Inc</rights><rights>2016 American Ceramic Society and Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4008-15ad3642449d0de0a9482b3a7b5f52d599fb09dfe092818fc93a1dd8b10c50593</citedby><cites>FETCH-LOGICAL-c4008-15ad3642449d0de0a9482b3a7b5f52d599fb09dfe092818fc93a1dd8b10c50593</cites><orcidid>0000-0001-6472-2780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijag.12218$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijag.12218$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Cassar, Daniel R.</creatorcontrib><title>Crystallization Driving Force of Supercooled Oxide Liquids</title><title>International journal of applied glass science</title><addtitle>Int J Appl Glass Sci</addtitle><description>The driving force for crystallization (Δμ) can be calculated by the Gibbs free energy equation, which relies on heat capacity (Cp) data. However, such data may be unavailable, which led several authors to propose new equations to estimate Δμ without Cp. Two relevant expressions are the Turnbull and Hoffman equations, which are assumed to act as boundaries for the actual value of Δμ. The aim of this work was to test whether this assumption is valid for 65 oxide liquids, including glass formers and reluctant glass‐forming compositions. These equations do not act as boundaries, but the majority of the glass formers do have a driving force within these boundaries. Furthermore, this work tested a Δμ expression proposed by Gutzow and Dobreva that is a generalization of the Turnbull and Hoffman equations. This equation described the actual values of Δμ really well for all compositions with only one additional parameter: a0. Finally, a new expression to estimate a0 was obtained based on the results of this work.</description><subject>Boundaries</subject><subject>Composition</subject><subject>Crystallization</subject><subject>Estimates</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Glass</subject><subject>Glass formation</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>oxide liquids</subject><subject>Oxides</subject><subject>thermodynamic driving force</subject><issn>2041-1286</issn><issn>2041-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwjAUxxejiQS5-AmWeDEmw7523VpvBAUxRA9gSLw0Ze1IcVBomYKf3uGUgwf-l_cOv__Lyy8ILgG1ocqtmctZGzAGdhI0MIohAszj08POkvOg5f0cVSGMJZw1gruu2_mNLArzJTfGLsN7Zz7Mchb2rMt0aPNwVK60y6wttApftkbpcGjWpVH-IjjLZeF163c2g9few7j7GA1f-oNuZxhlMUIsAioVSWIcx1whpZHkMcNTItMpzSlWlPN8irjKNeKYAcszTiQoxaaAMoooJ83gur67cnZdar8RC-MzXRRyqW3pBTBCE4gJhQq9-ofObemW1XcCowTxJK2EHKOAQVrJIiitqJuaypz13ulcrJxZSLcTgMTet9j7Fj--Kxhq-NMUeneEFIOnTv-vE9Ud4zd6e-hI9y6SlKRUTJ77YtSbjFNCsXgj3ymRjlY</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Cassar, Daniel R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6472-2780</orcidid></search><sort><creationdate>201609</creationdate><title>Crystallization Driving Force of Supercooled Oxide Liquids</title><author>Cassar, Daniel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4008-15ad3642449d0de0a9482b3a7b5f52d599fb09dfe092818fc93a1dd8b10c50593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundaries</topic><topic>Composition</topic><topic>Crystallization</topic><topic>Estimates</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Glass</topic><topic>Glass formation</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>oxide liquids</topic><topic>Oxides</topic><topic>thermodynamic driving force</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassar, Daniel R.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied glass science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassar, Daniel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallization Driving Force of Supercooled Oxide Liquids</atitle><jtitle>International journal of applied glass science</jtitle><addtitle>Int J Appl Glass Sci</addtitle><date>2016-09</date><risdate>2016</risdate><volume>7</volume><issue>3</issue><spage>262</spage><epage>269</epage><pages>262-269</pages><issn>2041-1286</issn><eissn>2041-1294</eissn><abstract>The driving force for crystallization (Δμ) can be calculated by the Gibbs free energy equation, which relies on heat capacity (Cp) data. However, such data may be unavailable, which led several authors to propose new equations to estimate Δμ without Cp. Two relevant expressions are the Turnbull and Hoffman equations, which are assumed to act as boundaries for the actual value of Δμ. The aim of this work was to test whether this assumption is valid for 65 oxide liquids, including glass formers and reluctant glass‐forming compositions. These equations do not act as boundaries, but the majority of the glass formers do have a driving force within these boundaries. Furthermore, this work tested a Δμ expression proposed by Gutzow and Dobreva that is a generalization of the Turnbull and Hoffman equations. This equation described the actual values of Δμ really well for all compositions with only one additional parameter: a0. Finally, a new expression to estimate a0 was obtained based on the results of this work.</abstract><cop>Westerville</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ijag.12218</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6472-2780</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-1286
ispartof International journal of applied glass science, 2016-09, Vol.7 (3), p.262-269
issn 2041-1286
2041-1294
language eng
recordid cdi_proquest_miscellaneous_1835614351
source Access via Wiley Online Library
subjects Boundaries
Composition
Crystallization
Estimates
Free energy
Gibbs free energy
Glass
Glass formation
Liquids
Mathematical analysis
oxide liquids
Oxides
thermodynamic driving force
title Crystallization Driving Force of Supercooled Oxide Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallization%20Driving%20Force%20of%20Supercooled%20Oxide%20Liquids&rft.jtitle=International%20journal%20of%20applied%20glass%20science&rft.au=Cassar,%20Daniel%20R.&rft.date=2016-09&rft.volume=7&rft.issue=3&rft.spage=262&rft.epage=269&rft.pages=262-269&rft.issn=2041-1286&rft.eissn=2041-1294&rft_id=info:doi/10.1111/ijag.12218&rft_dat=%3Cproquest_cross%3E1835614351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1817041307&rft_id=info:pmid/&rfr_iscdi=true