Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model
•Solid waste forecasting is essential for sustainable waste management.•Waste generation is related to demographic, economic and social factors.•The optimum factors that affect waste generation were determined.•Landfill area required to dispose the waste would be reduced by 43%. Solid waste predicti...
Gespeichert in:
Veröffentlicht in: | Waste management (Elmsford) 2016-09, Vol.55, p.3-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 3 |
container_title | Waste management (Elmsford) |
container_volume | 55 |
creator | Younes, Mohammad K. Nopiah, Z.M. Basri, N.E. Ahmad Basri, H. Abushammala, Mohammed F.M. Younes, Mohammed Y. |
description | •Solid waste forecasting is essential for sustainable waste management.•Waste generation is related to demographic, economic and social factors.•The optimum factors that affect waste generation were determined.•Landfill area required to dispose the waste would be reduced by 43%.
Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R2). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R2=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. |
doi_str_mv | 10.1016/j.wasman.2015.10.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835612836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956053X15301690</els_id><sourcerecordid>1811889918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-26d9945948c9c51bfe2700f5c80b4c1f7467b28bff8af0e55439fb73eefedd9e3</originalsourceid><addsrcrecordid>eNqNkU2PFCEQhonRuOPqPzCGo5cegW5ouJhsNu5HMtGDmngjNBQbJt3NCD1r9Ndbndn1qF6gqvLUW1AvIa8523LG1bv99oerk5u3gnGJpS0T7AnZcN2bRnRSPSUbZqRqmGy_nZEXte4Z453m7Dk5E0oKoZnakF87N4eYxpG6Ao5CXdLklpRnOrgKgWKQ5gXuilsww4kL0JDqIVc30nxYyUpRgtY8pkcg5gIeozTf0WNdzymHFBMqXHy8uv28pjC-JM-iGyu8erjPyderD18ub5rdp-vby4td4_G1SyNUMKaTptPeeMmHCKJnLEqv2dB5HvtO9YPQQ4zaRQZSdq2JQ98CRAjBQHtO3p50DyV_P-IP7ZSqh3F0M-RjtVy3UnGhW_UfKOdaG4Mt_0ZZr3vV9gLR7oT6kmstEO2h4JbLT8uZXb20e3vy0q5erlX0EtvePEw4DhOEP02P5iHw_gQAbu8-QbHVJ5g9hIT7X2zI6e8TfgNCnLNF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807876372</pqid></control><display><type>article</type><title>Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Younes, Mohammad K. ; Nopiah, Z.M. ; Basri, N.E. Ahmad ; Basri, H. ; Abushammala, Mohammed F.M. ; Younes, Mohammed Y.</creator><creatorcontrib>Younes, Mohammad K. ; Nopiah, Z.M. ; Basri, N.E. Ahmad ; Basri, H. ; Abushammala, Mohammed F.M. ; Younes, Mohammed Y.</creatorcontrib><description>•Solid waste forecasting is essential for sustainable waste management.•Waste generation is related to demographic, economic and social factors.•The optimum factors that affect waste generation were determined.•Landfill area required to dispose the waste would be reduced by 43%.
Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R2). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R2=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%.</description><identifier>ISSN: 0956-053X</identifier><identifier>EISSN: 1879-2456</identifier><identifier>DOI: 10.1016/j.wasman.2015.10.020</identifier><identifier>PMID: 26522806</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Adaptive neuro-fuzzy inference system ; Area conservation ; Developing Countries ; Forecasting ; Land ; Landfill area estimation ; Mathematical models ; Models, Theoretical ; Refuse Disposal - methods ; Refuse Disposal - statistics & numerical data ; Searching ; Solid Waste - statistics & numerical data ; Solid waste forecasting ; Solid wastes ; Vision ; Waste disposal ; Waste Disposal Facilities - statistics & numerical data ; Wastes</subject><ispartof>Waste management (Elmsford), 2016-09, Vol.55, p.3-11</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-26d9945948c9c51bfe2700f5c80b4c1f7467b28bff8af0e55439fb73eefedd9e3</citedby><cites>FETCH-LOGICAL-c481t-26d9945948c9c51bfe2700f5c80b4c1f7467b28bff8af0e55439fb73eefedd9e3</cites><orcidid>0000-0001-5548-4821 ; 0000-0001-7625-9172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956053X15301690$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26522806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Younes, Mohammad K.</creatorcontrib><creatorcontrib>Nopiah, Z.M.</creatorcontrib><creatorcontrib>Basri, N.E. Ahmad</creatorcontrib><creatorcontrib>Basri, H.</creatorcontrib><creatorcontrib>Abushammala, Mohammed F.M.</creatorcontrib><creatorcontrib>Younes, Mohammed Y.</creatorcontrib><title>Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model</title><title>Waste management (Elmsford)</title><addtitle>Waste Manag</addtitle><description>•Solid waste forecasting is essential for sustainable waste management.•Waste generation is related to demographic, economic and social factors.•The optimum factors that affect waste generation were determined.•Landfill area required to dispose the waste would be reduced by 43%.
Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R2). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R2=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%.</description><subject>Adaptive neuro-fuzzy inference system</subject><subject>Area conservation</subject><subject>Developing Countries</subject><subject>Forecasting</subject><subject>Land</subject><subject>Landfill area estimation</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Refuse Disposal - methods</subject><subject>Refuse Disposal - statistics & numerical data</subject><subject>Searching</subject><subject>Solid Waste - statistics & numerical data</subject><subject>Solid waste forecasting</subject><subject>Solid wastes</subject><subject>Vision</subject><subject>Waste disposal</subject><subject>Waste Disposal Facilities - statistics & numerical data</subject><subject>Wastes</subject><issn>0956-053X</issn><issn>1879-2456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2PFCEQhonRuOPqPzCGo5cegW5ouJhsNu5HMtGDmngjNBQbJt3NCD1r9Ndbndn1qF6gqvLUW1AvIa8523LG1bv99oerk5u3gnGJpS0T7AnZcN2bRnRSPSUbZqRqmGy_nZEXte4Z453m7Dk5E0oKoZnakF87N4eYxpG6Ao5CXdLklpRnOrgKgWKQ5gXuilsww4kL0JDqIVc30nxYyUpRgtY8pkcg5gIeozTf0WNdzymHFBMqXHy8uv28pjC-JM-iGyu8erjPyderD18ub5rdp-vby4td4_G1SyNUMKaTptPeeMmHCKJnLEqv2dB5HvtO9YPQQ4zaRQZSdq2JQ98CRAjBQHtO3p50DyV_P-IP7ZSqh3F0M-RjtVy3UnGhW_UfKOdaG4Mt_0ZZr3vV9gLR7oT6kmstEO2h4JbLT8uZXb20e3vy0q5erlX0EtvePEw4DhOEP02P5iHw_gQAbu8-QbHVJ5g9hIT7X2zI6e8TfgNCnLNF</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Younes, Mohammad K.</creator><creator>Nopiah, Z.M.</creator><creator>Basri, N.E. Ahmad</creator><creator>Basri, H.</creator><creator>Abushammala, Mohammed F.M.</creator><creator>Younes, Mohammed Y.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7TV</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5548-4821</orcidid><orcidid>https://orcid.org/0000-0001-7625-9172</orcidid></search><sort><creationdate>20160901</creationdate><title>Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model</title><author>Younes, Mohammad K. ; Nopiah, Z.M. ; Basri, N.E. Ahmad ; Basri, H. ; Abushammala, Mohammed F.M. ; Younes, Mohammed Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-26d9945948c9c51bfe2700f5c80b4c1f7467b28bff8af0e55439fb73eefedd9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive neuro-fuzzy inference system</topic><topic>Area conservation</topic><topic>Developing Countries</topic><topic>Forecasting</topic><topic>Land</topic><topic>Landfill area estimation</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Refuse Disposal - methods</topic><topic>Refuse Disposal - statistics & numerical data</topic><topic>Searching</topic><topic>Solid Waste - statistics & numerical data</topic><topic>Solid waste forecasting</topic><topic>Solid wastes</topic><topic>Vision</topic><topic>Waste disposal</topic><topic>Waste Disposal Facilities - statistics & numerical data</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Younes, Mohammad K.</creatorcontrib><creatorcontrib>Nopiah, Z.M.</creatorcontrib><creatorcontrib>Basri, N.E. Ahmad</creatorcontrib><creatorcontrib>Basri, H.</creatorcontrib><creatorcontrib>Abushammala, Mohammed F.M.</creatorcontrib><creatorcontrib>Younes, Mohammed Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Waste management (Elmsford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Younes, Mohammad K.</au><au>Nopiah, Z.M.</au><au>Basri, N.E. Ahmad</au><au>Basri, H.</au><au>Abushammala, Mohammed F.M.</au><au>Younes, Mohammed Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model</atitle><jtitle>Waste management (Elmsford)</jtitle><addtitle>Waste Manag</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>55</volume><spage>3</spage><epage>11</epage><pages>3-11</pages><issn>0956-053X</issn><eissn>1879-2456</eissn><abstract>•Solid waste forecasting is essential for sustainable waste management.•Waste generation is related to demographic, economic and social factors.•The optimum factors that affect waste generation were determined.•Landfill area required to dispose the waste would be reduced by 43%.
Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R2). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R2=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26522806</pmid><doi>10.1016/j.wasman.2015.10.020</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5548-4821</orcidid><orcidid>https://orcid.org/0000-0001-7625-9172</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-053X |
ispartof | Waste management (Elmsford), 2016-09, Vol.55, p.3-11 |
issn | 0956-053X 1879-2456 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835612836 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adaptive neuro-fuzzy inference system Area conservation Developing Countries Forecasting Land Landfill area estimation Mathematical models Models, Theoretical Refuse Disposal - methods Refuse Disposal - statistics & numerical data Searching Solid Waste - statistics & numerical data Solid waste forecasting Solid wastes Vision Waste disposal Waste Disposal Facilities - statistics & numerical data Wastes |
title | Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A56%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landfill%20area%20estimation%20based%20on%20integrated%20waste%20disposal%20options%20and%20solid%20waste%20forecasting%20using%20modified%20ANFIS%20model&rft.jtitle=Waste%20management%20(Elmsford)&rft.au=Younes,%20Mohammad%20K.&rft.date=2016-09-01&rft.volume=55&rft.spage=3&rft.epage=11&rft.pages=3-11&rft.issn=0956-053X&rft.eissn=1879-2456&rft_id=info:doi/10.1016/j.wasman.2015.10.020&rft_dat=%3Cproquest_cross%3E1811889918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807876372&rft_id=info:pmid/26522806&rft_els_id=S0956053X15301690&rfr_iscdi=true |