Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers
We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill f...
Gespeichert in:
Veröffentlicht in: | Progress in photovoltaics 2016-10, Vol.24 (10), p.1295-1303 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1303 |
---|---|
container_issue | 10 |
container_start_page | 1295 |
container_title | Progress in photovoltaics |
container_volume | 24 |
creator | Kobayashi, Eiji Watabe, Yoshimi Hao, Ruiying Ravi, T. S. |
description | We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley & Sons, Ltd.
Silicon heterojunction solar cells consist of epitaxially grown crystalline silicon wafers coated with hydrogenated amorphous silicon layers for passivating contact formation. Here, we demonstrate a conversion cell efficiency of 23% in size of 243.4 cm2 by using epitaxial silicon wafers with low stacking fault density and a rear‐emitter structure. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of silicon heterojunction solar cells. |
doi_str_mv | 10.1002/pip.2813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835612223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835612223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3643-fa55cfd06b5144e3b8bc5ee7a8900f8965838f58f4b8dc73a31d84d2f4aeda923</originalsourceid><addsrcrecordid>eNp10FtLwzAUB_AiCuoU_AgBEXyp5tK0yaMObzB1yETxJWTpCWZ2bU1atn17MxRFwadzHn6cyz9JDgg-IRjT09a1J1QQtpHsECxlSrh83lz3OU0LKfl2shvCDGNSCJnvJC_X0IFvZn1tOtfUKDSV9shAVQW0cN0rouwIgbXOOKjNCkVSp92qBQSt6_TS6Qq9gbcVhICCq5yJYqEt-LCXbFldBdj_qoPk8fJiMrxOR_dXN8OzUWpYnrHUas6NLXE-5STLgE3F1HCAQguJsY1HcsGE5cJmU1GagmlGSpGV1GYaSi0pGyTHn3Nb37z3EDo1d2H9ga6h6YMigvGcUEpZpId_6KzpfR2vi4rIuIln-Geg8U0IHqxqvZtrv1IEq3XIKoas1iFHmn7Shatg9a9T45vxb-9CB8tvr_2bygtWcPV0d6Uu7yb5bX5O1QP7AMhTjOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819583540</pqid></control><display><type>article</type><title>Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kobayashi, Eiji ; Watabe, Yoshimi ; Hao, Ruiying ; Ravi, T. S.</creator><creatorcontrib>Kobayashi, Eiji ; Watabe, Yoshimi ; Hao, Ruiying ; Ravi, T. S.</creatorcontrib><description>We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley & Sons, Ltd.
Silicon heterojunction solar cells consist of epitaxially grown crystalline silicon wafers coated with hydrogenated amorphous silicon layers for passivating contact formation. Here, we demonstrate a conversion cell efficiency of 23% in size of 243.4 cm2 by using epitaxial silicon wafers with low stacking fault density and a rear‐emitter structure. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of silicon heterojunction solar cells.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.2813</identifier><identifier>CODEN: PPHOED</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Current density ; Epitaxial growth ; epitaxy ; heterojunction ; Heterojunctions ; high efficiency ; Mapping ; Photovoltaic cells ; Silicon ; solar cell ; Solar cells ; thin film ; Wafers</subject><ispartof>Progress in photovoltaics, 2016-10, Vol.24 (10), p.1295-1303</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3643-fa55cfd06b5144e3b8bc5ee7a8900f8965838f58f4b8dc73a31d84d2f4aeda923</citedby><cites>FETCH-LOGICAL-c3643-fa55cfd06b5144e3b8bc5ee7a8900f8965838f58f4b8dc73a31d84d2f4aeda923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.2813$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.2813$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kobayashi, Eiji</creatorcontrib><creatorcontrib>Watabe, Yoshimi</creatorcontrib><creatorcontrib>Hao, Ruiying</creatorcontrib><creatorcontrib>Ravi, T. S.</creatorcontrib><title>Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley & Sons, Ltd.
Silicon heterojunction solar cells consist of epitaxially grown crystalline silicon wafers coated with hydrogenated amorphous silicon layers for passivating contact formation. Here, we demonstrate a conversion cell efficiency of 23% in size of 243.4 cm2 by using epitaxial silicon wafers with low stacking fault density and a rear‐emitter structure. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of silicon heterojunction solar cells.</description><subject>Current density</subject><subject>Epitaxial growth</subject><subject>epitaxy</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>high efficiency</subject><subject>Mapping</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>solar cell</subject><subject>Solar cells</subject><subject>thin film</subject><subject>Wafers</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10FtLwzAUB_AiCuoU_AgBEXyp5tK0yaMObzB1yETxJWTpCWZ2bU1atn17MxRFwadzHn6cyz9JDgg-IRjT09a1J1QQtpHsECxlSrh83lz3OU0LKfl2shvCDGNSCJnvJC_X0IFvZn1tOtfUKDSV9shAVQW0cN0rouwIgbXOOKjNCkVSp92qBQSt6_TS6Qq9gbcVhICCq5yJYqEt-LCXbFldBdj_qoPk8fJiMrxOR_dXN8OzUWpYnrHUas6NLXE-5STLgE3F1HCAQguJsY1HcsGE5cJmU1GagmlGSpGV1GYaSi0pGyTHn3Nb37z3EDo1d2H9ga6h6YMigvGcUEpZpId_6KzpfR2vi4rIuIln-Geg8U0IHqxqvZtrv1IEq3XIKoas1iFHmn7Shatg9a9T45vxb-9CB8tvr_2bygtWcPV0d6Uu7yb5bX5O1QP7AMhTjOE</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Kobayashi, Eiji</creator><creator>Watabe, Yoshimi</creator><creator>Hao, Ruiying</creator><creator>Ravi, T. S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201610</creationdate><title>Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers</title><author>Kobayashi, Eiji ; Watabe, Yoshimi ; Hao, Ruiying ; Ravi, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3643-fa55cfd06b5144e3b8bc5ee7a8900f8965838f58f4b8dc73a31d84d2f4aeda923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Current density</topic><topic>Epitaxial growth</topic><topic>epitaxy</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>high efficiency</topic><topic>Mapping</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>solar cell</topic><topic>Solar cells</topic><topic>thin film</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Eiji</creatorcontrib><creatorcontrib>Watabe, Yoshimi</creatorcontrib><creatorcontrib>Hao, Ruiying</creatorcontrib><creatorcontrib>Ravi, T. S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Eiji</au><au>Watabe, Yoshimi</au><au>Hao, Ruiying</au><au>Ravi, T. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2016-10</date><risdate>2016</risdate><volume>24</volume><issue>10</issue><spage>1295</spage><epage>1303</epage><pages>1295-1303</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><coden>PPHOED</coden><abstract>We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley & Sons, Ltd.
Silicon heterojunction solar cells consist of epitaxially grown crystalline silicon wafers coated with hydrogenated amorphous silicon layers for passivating contact formation. Here, we demonstrate a conversion cell efficiency of 23% in size of 243.4 cm2 by using epitaxial silicon wafers with low stacking fault density and a rear‐emitter structure. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of silicon heterojunction solar cells.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pip.2813</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-7995 |
ispartof | Progress in photovoltaics, 2016-10, Vol.24 (10), p.1295-1303 |
issn | 1062-7995 1099-159X |
language | eng |
recordid | cdi_proquest_miscellaneous_1835612223 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Current density Epitaxial growth epitaxy heterojunction Heterojunctions high efficiency Mapping Photovoltaic cells Silicon solar cell Solar cells thin film Wafers |
title | Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterojunction%20solar%20cells%20with%2023%25%20efficiency%20on%20n-type%20epitaxial%20kerfless%20silicon%20wafers&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Kobayashi,%20Eiji&rft.date=2016-10&rft.volume=24&rft.issue=10&rft.spage=1295&rft.epage=1303&rft.pages=1295-1303&rft.issn=1062-7995&rft.eissn=1099-159X&rft.coden=PPHOED&rft_id=info:doi/10.1002/pip.2813&rft_dat=%3Cproquest_cross%3E1835612223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819583540&rft_id=info:pmid/&rfr_iscdi=true |