Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers

We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in photovoltaics 2016-10, Vol.24 (10), p.1295-1303
Hauptverfasser: Kobayashi, Eiji, Watabe, Yoshimi, Hao, Ruiying, Ravi, T. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1303
container_issue 10
container_start_page 1295
container_title Progress in photovoltaics
container_volume 24
creator Kobayashi, Eiji
Watabe, Yoshimi
Hao, Ruiying
Ravi, T. S.
description We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley & Sons, Ltd. Silicon heterojunction solar cells consist of epitaxially grown crystalline silicon wafers coated with hydrogenated amorphous silicon layers for passivating contact formation. Here, we demonstrate a conversion cell efficiency of 23% in size of 243.4 cm2 by using epitaxial silicon wafers with low stacking fault density and a rear‐emitter structure. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of silicon heterojunction solar cells.
doi_str_mv 10.1002/pip.2813
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835612223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835612223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3643-fa55cfd06b5144e3b8bc5ee7a8900f8965838f58f4b8dc73a31d84d2f4aeda923</originalsourceid><addsrcrecordid>eNp10FtLwzAUB_AiCuoU_AgBEXyp5tK0yaMObzB1yETxJWTpCWZ2bU1atn17MxRFwadzHn6cyz9JDgg-IRjT09a1J1QQtpHsECxlSrh83lz3OU0LKfl2shvCDGNSCJnvJC_X0IFvZn1tOtfUKDSV9shAVQW0cN0rouwIgbXOOKjNCkVSp92qBQSt6_TS6Qq9gbcVhICCq5yJYqEt-LCXbFldBdj_qoPk8fJiMrxOR_dXN8OzUWpYnrHUas6NLXE-5STLgE3F1HCAQguJsY1HcsGE5cJmU1GagmlGSpGV1GYaSi0pGyTHn3Nb37z3EDo1d2H9ga6h6YMigvGcUEpZpId_6KzpfR2vi4rIuIln-Geg8U0IHqxqvZtrv1IEq3XIKoas1iFHmn7Shatg9a9T45vxb-9CB8tvr_2bygtWcPV0d6Uu7yb5bX5O1QP7AMhTjOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819583540</pqid></control><display><type>article</type><title>Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kobayashi, Eiji ; Watabe, Yoshimi ; Hao, Ruiying ; Ravi, T. S.</creator><creatorcontrib>Kobayashi, Eiji ; Watabe, Yoshimi ; Hao, Ruiying ; Ravi, T. S.</creatorcontrib><description>We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley &amp; Sons, Ltd. Silicon heterojunction solar cells consist of epitaxially grown crystalline silicon wafers coated with hydrogenated amorphous silicon layers for passivating contact formation. Here, we demonstrate a conversion cell efficiency of 23% in size of 243.4 cm2 by using epitaxial silicon wafers with low stacking fault density and a rear‐emitter structure. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of silicon heterojunction solar cells.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.2813</identifier><identifier>CODEN: PPHOED</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Current density ; Epitaxial growth ; epitaxy ; heterojunction ; Heterojunctions ; high efficiency ; Mapping ; Photovoltaic cells ; Silicon ; solar cell ; Solar cells ; thin film ; Wafers</subject><ispartof>Progress in photovoltaics, 2016-10, Vol.24 (10), p.1295-1303</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3643-fa55cfd06b5144e3b8bc5ee7a8900f8965838f58f4b8dc73a31d84d2f4aeda923</citedby><cites>FETCH-LOGICAL-c3643-fa55cfd06b5144e3b8bc5ee7a8900f8965838f58f4b8dc73a31d84d2f4aeda923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.2813$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.2813$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kobayashi, Eiji</creatorcontrib><creatorcontrib>Watabe, Yoshimi</creatorcontrib><creatorcontrib>Hao, Ruiying</creatorcontrib><creatorcontrib>Ravi, T. S.</creatorcontrib><title>Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley &amp; Sons, Ltd. Silicon heterojunction solar cells consist of epitaxially grown crystalline silicon wafers coated with hydrogenated amorphous silicon layers for passivating contact formation. Here, we demonstrate a conversion cell efficiency of 23% in size of 243.4 cm2 by using epitaxial silicon wafers with low stacking fault density and a rear‐emitter structure. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of silicon heterojunction solar cells.</description><subject>Current density</subject><subject>Epitaxial growth</subject><subject>epitaxy</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>high efficiency</subject><subject>Mapping</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>solar cell</subject><subject>Solar cells</subject><subject>thin film</subject><subject>Wafers</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10FtLwzAUB_AiCuoU_AgBEXyp5tK0yaMObzB1yETxJWTpCWZ2bU1atn17MxRFwadzHn6cyz9JDgg-IRjT09a1J1QQtpHsECxlSrh83lz3OU0LKfl2shvCDGNSCJnvJC_X0IFvZn1tOtfUKDSV9shAVQW0cN0rouwIgbXOOKjNCkVSp92qBQSt6_TS6Qq9gbcVhICCq5yJYqEt-LCXbFldBdj_qoPk8fJiMrxOR_dXN8OzUWpYnrHUas6NLXE-5STLgE3F1HCAQguJsY1HcsGE5cJmU1GagmlGSpGV1GYaSi0pGyTHn3Nb37z3EDo1d2H9ga6h6YMigvGcUEpZpId_6KzpfR2vi4rIuIln-Geg8U0IHqxqvZtrv1IEq3XIKoas1iFHmn7Shatg9a9T45vxb-9CB8tvr_2bygtWcPV0d6Uu7yb5bX5O1QP7AMhTjOE</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Kobayashi, Eiji</creator><creator>Watabe, Yoshimi</creator><creator>Hao, Ruiying</creator><creator>Ravi, T. S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201610</creationdate><title>Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers</title><author>Kobayashi, Eiji ; Watabe, Yoshimi ; Hao, Ruiying ; Ravi, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3643-fa55cfd06b5144e3b8bc5ee7a8900f8965838f58f4b8dc73a31d84d2f4aeda923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Current density</topic><topic>Epitaxial growth</topic><topic>epitaxy</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>high efficiency</topic><topic>Mapping</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>solar cell</topic><topic>Solar cells</topic><topic>thin film</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Eiji</creatorcontrib><creatorcontrib>Watabe, Yoshimi</creatorcontrib><creatorcontrib>Hao, Ruiying</creatorcontrib><creatorcontrib>Ravi, T. S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kobayashi, Eiji</au><au>Watabe, Yoshimi</au><au>Hao, Ruiying</au><au>Ravi, T. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2016-10</date><risdate>2016</risdate><volume>24</volume><issue>10</issue><spage>1295</spage><epage>1303</epage><pages>1295-1303</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><coden>PPHOED</coden><abstract>We present a heterojunction (HJ) solar cell on n‐type epitaxially grown kerfless crystalline‐silicon with an in‐house‐measured conversion efficiency of 23%. The total cell area is 243.4 cm2. The cell has a short‐circuit current density of 39.6 mA cm−2, an open‐circuit voltage of 725 mV, and a fill factor of 0.799. The effect of stacking faults (SFs) is examined by current density (J) mapping measurements as well as by spectral response mapping. The J mapping images show that the localized lower J regions of the HJ solar cells are associated with recombination sites originating from SFs, independent of whether SFs are formed on the emitter or absorber side. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of Si HJ solar cells. Copyright © 2016 John Wiley &amp; Sons, Ltd. Silicon heterojunction solar cells consist of epitaxially grown crystalline silicon wafers coated with hydrogenated amorphous silicon layers for passivating contact formation. Here, we demonstrate a conversion cell efficiency of 23% in size of 243.4 cm2 by using epitaxial silicon wafers with low stacking fault density and a rear‐emitter structure. The solar cell results and our analysis suggest that epitaxially grown wafers based on kerfless technology could be an alternative for low‐cost industrial production of silicon heterojunction solar cells.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pip.2813</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2016-10, Vol.24 (10), p.1295-1303
issn 1062-7995
1099-159X
language eng
recordid cdi_proquest_miscellaneous_1835612223
source Wiley Online Library Journals Frontfile Complete
subjects Current density
Epitaxial growth
epitaxy
heterojunction
Heterojunctions
high efficiency
Mapping
Photovoltaic cells
Silicon
solar cell
Solar cells
thin film
Wafers
title Heterojunction solar cells with 23% efficiency on n-type epitaxial kerfless silicon wafers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterojunction%20solar%20cells%20with%2023%25%20efficiency%20on%20n-type%20epitaxial%20kerfless%20silicon%20wafers&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Kobayashi,%20Eiji&rft.date=2016-10&rft.volume=24&rft.issue=10&rft.spage=1295&rft.epage=1303&rft.pages=1295-1303&rft.issn=1062-7995&rft.eissn=1099-159X&rft.coden=PPHOED&rft_id=info:doi/10.1002/pip.2813&rft_dat=%3Cproquest_cross%3E1835612223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819583540&rft_id=info:pmid/&rfr_iscdi=true