Stability for the Electromagnetic Scattering from Large Cavities

Consider the scattering of electromagnetic waves from a large rectangular cavity embedded in the infinite ground plane. There are two fundamental polarizations for the scattering problem in two dimensions: TM (transverse magnetic) and TE (transverse electric). In this paper, new stability results fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2016-06, Vol.220 (3), p.1003-1044
Hauptverfasser: Bao, Gang, Yun, KiHyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 3
container_start_page 1003
container_title Archive for rational mechanics and analysis
container_volume 220
creator Bao, Gang
Yun, KiHyun
description Consider the scattering of electromagnetic waves from a large rectangular cavity embedded in the infinite ground plane. There are two fundamental polarizations for the scattering problem in two dimensions: TM (transverse magnetic) and TE (transverse electric). In this paper, new stability results for the cavity problems are established for large rectangular shape cavities in both polarizations. For the TM cavity problem, an asymptotic property of the solution and a stability estimate with an improved dependence on the high wavenumber are derived. In the TE case, the first stability result is established with an explicit dependence on the wave number.
doi_str_mv 10.1007/s00205-015-0947-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835609542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835609542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-1aa3faf118e31d12e9f7d09ffe9ce86b212d8f48128f8eedc40d3e734c077e8f3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCFy-rk4_dZG9KqR9Q8FA9hzQ7qSnb3ZqkYv-9u6wgCB6GYYb3fWd4CLmkcEMB5G0EYFDkQPuqhMy_jsiECs5yKCU_JhMA4HlVMHlKzmLcDCPj5YTcLZNZ-canQ-a6kKV3zOYN2hS6rVm3mLzNltakhMG368z162xhwhqzmfn0yWM8JyfONBEvfvqUvD3MX2dP-eLl8Xl2v8gtF1XKqTHcGUepQk5ryrBysobKOawsqnLFKKuVE4oy5RRibQXUHCUXFqRE5fiUXI-5u9B97DEmvfXRYtOYFrt91FTxooSqEKyXXv2Rbrp9aPvvNINSSOiPqV5FR5UNXYwBnd4FvzXhoCnogakemeqeqR6Y6q_ew0ZP3A08MPwm_2_6Bl00eZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064702128</pqid></control><display><type>article</type><title>Stability for the Electromagnetic Scattering from Large Cavities</title><source>SpringerNature Journals</source><creator>Bao, Gang ; Yun, KiHyun</creator><creatorcontrib>Bao, Gang ; Yun, KiHyun</creatorcontrib><description>Consider the scattering of electromagnetic waves from a large rectangular cavity embedded in the infinite ground plane. There are two fundamental polarizations for the scattering problem in two dimensions: TM (transverse magnetic) and TE (transverse electric). In this paper, new stability results for the cavity problems are established for large rectangular shape cavities in both polarizations. For the TM cavity problem, an asymptotic property of the solution and a stability estimate with an improved dependence on the high wavenumber are derived. In the TE case, the first stability result is established with an explicit dependence on the wave number.</description><identifier>ISSN: 0003-9527</identifier><identifier>EISSN: 1432-0673</identifier><identifier>DOI: 10.1007/s00205-015-0947-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Classical Mechanics ; Complex Systems ; Dependence ; Electromagnetic radiation ; Electromagnetic scattering ; Electromagnetic waves ; Estimates ; Fluid- and Aerodynamics ; Ground plane ; Holes ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Polarization ; Scattering ; Stability ; Theoretical ; Wavelengths</subject><ispartof>Archive for rational mechanics and analysis, 2016-06, Vol.220 (3), p.1003-1044</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-1aa3faf118e31d12e9f7d09ffe9ce86b212d8f48128f8eedc40d3e734c077e8f3</citedby><cites>FETCH-LOGICAL-c349t-1aa3faf118e31d12e9f7d09ffe9ce86b212d8f48128f8eedc40d3e734c077e8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00205-015-0947-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00205-015-0947-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bao, Gang</creatorcontrib><creatorcontrib>Yun, KiHyun</creatorcontrib><title>Stability for the Electromagnetic Scattering from Large Cavities</title><title>Archive for rational mechanics and analysis</title><addtitle>Arch Rational Mech Anal</addtitle><description>Consider the scattering of electromagnetic waves from a large rectangular cavity embedded in the infinite ground plane. There are two fundamental polarizations for the scattering problem in two dimensions: TM (transverse magnetic) and TE (transverse electric). In this paper, new stability results for the cavity problems are established for large rectangular shape cavities in both polarizations. For the TM cavity problem, an asymptotic property of the solution and a stability estimate with an improved dependence on the high wavenumber are derived. In the TE case, the first stability result is established with an explicit dependence on the wave number.</description><subject>Asymptotic properties</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Dependence</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetic waves</subject><subject>Estimates</subject><subject>Fluid- and Aerodynamics</subject><subject>Ground plane</subject><subject>Holes</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Scattering</subject><subject>Stability</subject><subject>Theoretical</subject><subject>Wavelengths</subject><issn>0003-9527</issn><issn>1432-0673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuCFy-rk4_dZG9KqR9Q8FA9hzQ7qSnb3ZqkYv-9u6wgCB6GYYb3fWd4CLmkcEMB5G0EYFDkQPuqhMy_jsiECs5yKCU_JhMA4HlVMHlKzmLcDCPj5YTcLZNZ-canQ-a6kKV3zOYN2hS6rVm3mLzNltakhMG368z162xhwhqzmfn0yWM8JyfONBEvfvqUvD3MX2dP-eLl8Xl2v8gtF1XKqTHcGUepQk5ryrBysobKOawsqnLFKKuVE4oy5RRibQXUHCUXFqRE5fiUXI-5u9B97DEmvfXRYtOYFrt91FTxooSqEKyXXv2Rbrp9aPvvNINSSOiPqV5FR5UNXYwBnd4FvzXhoCnogakemeqeqR6Y6q_ew0ZP3A08MPwm_2_6Bl00eZU</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Bao, Gang</creator><creator>Yun, KiHyun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160601</creationdate><title>Stability for the Electromagnetic Scattering from Large Cavities</title><author>Bao, Gang ; Yun, KiHyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-1aa3faf118e31d12e9f7d09ffe9ce86b212d8f48128f8eedc40d3e734c077e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Dependence</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetic waves</topic><topic>Estimates</topic><topic>Fluid- and Aerodynamics</topic><topic>Ground plane</topic><topic>Holes</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Scattering</topic><topic>Stability</topic><topic>Theoretical</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Gang</creatorcontrib><creatorcontrib>Yun, KiHyun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for rational mechanics and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Gang</au><au>Yun, KiHyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability for the Electromagnetic Scattering from Large Cavities</atitle><jtitle>Archive for rational mechanics and analysis</jtitle><stitle>Arch Rational Mech Anal</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>220</volume><issue>3</issue><spage>1003</spage><epage>1044</epage><pages>1003-1044</pages><issn>0003-9527</issn><eissn>1432-0673</eissn><abstract>Consider the scattering of electromagnetic waves from a large rectangular cavity embedded in the infinite ground plane. There are two fundamental polarizations for the scattering problem in two dimensions: TM (transverse magnetic) and TE (transverse electric). In this paper, new stability results for the cavity problems are established for large rectangular shape cavities in both polarizations. For the TM cavity problem, an asymptotic property of the solution and a stability estimate with an improved dependence on the high wavenumber are derived. In the TE case, the first stability result is established with an explicit dependence on the wave number.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00205-015-0947-x</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9527
ispartof Archive for rational mechanics and analysis, 2016-06, Vol.220 (3), p.1003-1044
issn 0003-9527
1432-0673
language eng
recordid cdi_proquest_miscellaneous_1835609542
source SpringerNature Journals
subjects Asymptotic properties
Classical Mechanics
Complex Systems
Dependence
Electromagnetic radiation
Electromagnetic scattering
Electromagnetic waves
Estimates
Fluid- and Aerodynamics
Ground plane
Holes
Mathematical and Computational Physics
Physics
Physics and Astronomy
Polarization
Scattering
Stability
Theoretical
Wavelengths
title Stability for the Electromagnetic Scattering from Large Cavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20for%20the%20Electromagnetic%20Scattering%20from%20Large%20Cavities&rft.jtitle=Archive%20for%20rational%20mechanics%20and%20analysis&rft.au=Bao,%20Gang&rft.date=2016-06-01&rft.volume=220&rft.issue=3&rft.spage=1003&rft.epage=1044&rft.pages=1003-1044&rft.issn=0003-9527&rft.eissn=1432-0673&rft_id=info:doi/10.1007/s00205-015-0947-x&rft_dat=%3Cproquest_cross%3E1835609542%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064702128&rft_id=info:pmid/&rfr_iscdi=true