Phase-locked laser arrays through global antenna mutual coupling

Phase locking of an array of lasers is a highly effective method in beam shaping because it increases the output power and reduces the lasing threshold. Here, we show a conceptually novel phase-locking mechanism based on ‘antenna mutual coupling’ in which laser elements interact through far-field ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2016-08, Vol.10 (8), p.541-546
Hauptverfasser: Kao, Tsung-Yu, Reno, John L., Hu, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue 8
container_start_page 541
container_title Nature photonics
container_volume 10
creator Kao, Tsung-Yu
Reno, John L.
Hu, Qing
description Phase locking of an array of lasers is a highly effective method in beam shaping because it increases the output power and reduces the lasing threshold. Here, we show a conceptually novel phase-locking mechanism based on ‘antenna mutual coupling’ in which laser elements interact through far-field radiations with definite phase relations. This allows a long-range global coupling among the array elements to achieve a robust phase locking in two-dimensional laser arrays. The scheme is ideal for lasers with a deep subwavelength confined cavity, such as nanolasers, whose divergent beam patterns could be used to achieve a strong coupling among the elements in the array. We demonstrated experimentally such a scheme based on subwavelength short-cavity surface-emitting lasers at terahertz frequencies. More than 37 laser elements that span over ∼8  λ o were phase locked to each other, and delivered up to 6.5 mW (in a pulsed operation) single-mode radiation at ∼3 THz, with a maximum 450 mW A –1 slope efficiency and a near-diffraction-limited beam divergence. Two-dimensional arrays of short-cavity surface-emitting THz quantum cascade lasers are phase-locked to each other via mutual coupling. A directive beam on the order of 10° divergence and a maximum slope efficiency of 450 mW A −1 is achieved.
doi_str_mv 10.1038/nphoton.2016.104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835608982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674129744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-b4aa988e96c11e1ebdcd759d72e6346ec5176ae2691f76f2d37313790b6d4cb43</originalsourceid><addsrcrecordid>eNqNkc1LxDAQxYMouK7ePRa8eOmaSdJ83JTFL1jQg55Lmqbtrt2kJu3B_96WXUQExdO8efzmwfAQOge8AEzllesa33u3IBj46LADNAPBVMqkoodfWmbH6CTGDcYZVYTM0PVzo6NNW2_ebJm0ow6JDkF_xKRvgh_qJqlbX-g20a63zulkO_TDuBo_dO3a1afoqNJttGf7OUevd7cvy4d09XT_uLxZpYYx1acF01pJaRU3ABZsUZpSZKoUxHLKuDUZCK4t4QoqwStSUkGBCoULXjJTMDpHl7vcLvj3wcY-366jsW2rnfVDzEHSjGOpJPkHCiAVYJjQix_oxg_BjY_khAsGRAnG_qJAYkH5GJiNFN5RJvgYg63yLqy3OnzkgPOpo3zfUT51NDpTMOxO4oi62oZvwb_dfAJ1ZZUv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807368115</pqid></control><display><type>article</type><title>Phase-locked laser arrays through global antenna mutual coupling</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kao, Tsung-Yu ; Reno, John L. ; Hu, Qing</creator><creatorcontrib>Kao, Tsung-Yu ; Reno, John L. ; Hu, Qing</creatorcontrib><description>Phase locking of an array of lasers is a highly effective method in beam shaping because it increases the output power and reduces the lasing threshold. Here, we show a conceptually novel phase-locking mechanism based on ‘antenna mutual coupling’ in which laser elements interact through far-field radiations with definite phase relations. This allows a long-range global coupling among the array elements to achieve a robust phase locking in two-dimensional laser arrays. The scheme is ideal for lasers with a deep subwavelength confined cavity, such as nanolasers, whose divergent beam patterns could be used to achieve a strong coupling among the elements in the array. We demonstrated experimentally such a scheme based on subwavelength short-cavity surface-emitting lasers at terahertz frequencies. More than 37 laser elements that span over ∼8  λ o were phase locked to each other, and delivered up to 6.5 mW (in a pulsed operation) single-mode radiation at ∼3 THz, with a maximum 450 mW A –1 slope efficiency and a near-diffraction-limited beam divergence. Two-dimensional arrays of short-cavity surface-emitting THz quantum cascade lasers are phase-locked to each other via mutual coupling. A directive beam on the order of 10° divergence and a maximum slope efficiency of 450 mW A −1 is achieved.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2016.104</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1092 ; 639/624/1075/401 ; 639/624/400/1103 ; Antenna arrays ; Antennas ; Applied and Technical Physics ; Arrays ; Beams (radiation) ; Coupling ; Far fields ; Frequency dependence ; Laboratories ; Laser arrays ; Laser beams ; Lasers ; Locking ; Mutual coupling ; Photonics ; Physics ; Quantum cascade lasers ; Quantum Physics ; Radiation ; Surface emitting lasers ; Terahertz frequencies</subject><ispartof>Nature photonics, 2016-08, Vol.10 (8), p.541-546</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Aug 2016</rights><rights>Nature Publishing Group 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-b4aa988e96c11e1ebdcd759d72e6346ec5176ae2691f76f2d37313790b6d4cb43</citedby><cites>FETCH-LOGICAL-c449t-b4aa988e96c11e1ebdcd759d72e6346ec5176ae2691f76f2d37313790b6d4cb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2016.104$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2016.104$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kao, Tsung-Yu</creatorcontrib><creatorcontrib>Reno, John L.</creatorcontrib><creatorcontrib>Hu, Qing</creatorcontrib><title>Phase-locked laser arrays through global antenna mutual coupling</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Phase locking of an array of lasers is a highly effective method in beam shaping because it increases the output power and reduces the lasing threshold. Here, we show a conceptually novel phase-locking mechanism based on ‘antenna mutual coupling’ in which laser elements interact through far-field radiations with definite phase relations. This allows a long-range global coupling among the array elements to achieve a robust phase locking in two-dimensional laser arrays. The scheme is ideal for lasers with a deep subwavelength confined cavity, such as nanolasers, whose divergent beam patterns could be used to achieve a strong coupling among the elements in the array. We demonstrated experimentally such a scheme based on subwavelength short-cavity surface-emitting lasers at terahertz frequencies. More than 37 laser elements that span over ∼8  λ o were phase locked to each other, and delivered up to 6.5 mW (in a pulsed operation) single-mode radiation at ∼3 THz, with a maximum 450 mW A –1 slope efficiency and a near-diffraction-limited beam divergence. Two-dimensional arrays of short-cavity surface-emitting THz quantum cascade lasers are phase-locked to each other via mutual coupling. A directive beam on the order of 10° divergence and a maximum slope efficiency of 450 mW A −1 is achieved.</description><subject>639/624/1020/1092</subject><subject>639/624/1075/401</subject><subject>639/624/400/1103</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Applied and Technical Physics</subject><subject>Arrays</subject><subject>Beams (radiation)</subject><subject>Coupling</subject><subject>Far fields</subject><subject>Frequency dependence</subject><subject>Laboratories</subject><subject>Laser arrays</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Locking</subject><subject>Mutual coupling</subject><subject>Photonics</subject><subject>Physics</subject><subject>Quantum cascade lasers</subject><subject>Quantum Physics</subject><subject>Radiation</subject><subject>Surface emitting lasers</subject><subject>Terahertz frequencies</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkc1LxDAQxYMouK7ePRa8eOmaSdJ83JTFL1jQg55Lmqbtrt2kJu3B_96WXUQExdO8efzmwfAQOge8AEzllesa33u3IBj46LADNAPBVMqkoodfWmbH6CTGDcYZVYTM0PVzo6NNW2_ebJm0ow6JDkF_xKRvgh_qJqlbX-g20a63zulkO_TDuBo_dO3a1afoqNJttGf7OUevd7cvy4d09XT_uLxZpYYx1acF01pJaRU3ABZsUZpSZKoUxHLKuDUZCK4t4QoqwStSUkGBCoULXjJTMDpHl7vcLvj3wcY-366jsW2rnfVDzEHSjGOpJPkHCiAVYJjQix_oxg_BjY_khAsGRAnG_qJAYkH5GJiNFN5RJvgYg63yLqy3OnzkgPOpo3zfUT51NDpTMOxO4oi62oZvwb_dfAJ1ZZUv</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Kao, Tsung-Yu</creator><creator>Reno, John L.</creator><creator>Hu, Qing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160801</creationdate><title>Phase-locked laser arrays through global antenna mutual coupling</title><author>Kao, Tsung-Yu ; Reno, John L. ; Hu, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-b4aa988e96c11e1ebdcd759d72e6346ec5176ae2691f76f2d37313790b6d4cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/624/1020/1092</topic><topic>639/624/1075/401</topic><topic>639/624/400/1103</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Applied and Technical Physics</topic><topic>Arrays</topic><topic>Beams (radiation)</topic><topic>Coupling</topic><topic>Far fields</topic><topic>Frequency dependence</topic><topic>Laboratories</topic><topic>Laser arrays</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Locking</topic><topic>Mutual coupling</topic><topic>Photonics</topic><topic>Physics</topic><topic>Quantum cascade lasers</topic><topic>Quantum Physics</topic><topic>Radiation</topic><topic>Surface emitting lasers</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kao, Tsung-Yu</creatorcontrib><creatorcontrib>Reno, John L.</creatorcontrib><creatorcontrib>Hu, Qing</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kao, Tsung-Yu</au><au>Reno, John L.</au><au>Hu, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-locked laser arrays through global antenna mutual coupling</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>10</volume><issue>8</issue><spage>541</spage><epage>546</epage><pages>541-546</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Phase locking of an array of lasers is a highly effective method in beam shaping because it increases the output power and reduces the lasing threshold. Here, we show a conceptually novel phase-locking mechanism based on ‘antenna mutual coupling’ in which laser elements interact through far-field radiations with definite phase relations. This allows a long-range global coupling among the array elements to achieve a robust phase locking in two-dimensional laser arrays. The scheme is ideal for lasers with a deep subwavelength confined cavity, such as nanolasers, whose divergent beam patterns could be used to achieve a strong coupling among the elements in the array. We demonstrated experimentally such a scheme based on subwavelength short-cavity surface-emitting lasers at terahertz frequencies. More than 37 laser elements that span over ∼8  λ o were phase locked to each other, and delivered up to 6.5 mW (in a pulsed operation) single-mode radiation at ∼3 THz, with a maximum 450 mW A –1 slope efficiency and a near-diffraction-limited beam divergence. Two-dimensional arrays of short-cavity surface-emitting THz quantum cascade lasers are phase-locked to each other via mutual coupling. A directive beam on the order of 10° divergence and a maximum slope efficiency of 450 mW A −1 is achieved.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2016.104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2016-08, Vol.10 (8), p.541-546
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_miscellaneous_1835608982
source SpringerLink Journals; Nature Journals Online
subjects 639/624/1020/1092
639/624/1075/401
639/624/400/1103
Antenna arrays
Antennas
Applied and Technical Physics
Arrays
Beams (radiation)
Coupling
Far fields
Frequency dependence
Laboratories
Laser arrays
Laser beams
Lasers
Locking
Mutual coupling
Photonics
Physics
Quantum cascade lasers
Quantum Physics
Radiation
Surface emitting lasers
Terahertz frequencies
title Phase-locked laser arrays through global antenna mutual coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-locked%20laser%20arrays%20through%20global%20antenna%20mutual%20coupling&rft.jtitle=Nature%20photonics&rft.au=Kao,%20Tsung-Yu&rft.date=2016-08-01&rft.volume=10&rft.issue=8&rft.spage=541&rft.epage=546&rft.pages=541-546&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2016.104&rft_dat=%3Cproquest_cross%3E2674129744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807368115&rft_id=info:pmid/&rfr_iscdi=true