Paleofluvial landscape inheritance for Jakobshavn Isbræ catchment, Greenland

Subglacial topography exerts strong controls on glacier dynamics, influencing the orientation and velocity of ice flow, as well as modulating the distribution of basal waters and sediment. Bed geometry can also provide a long‐term record of geomorphic processes, allowing insight into landscape evolu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2016-06, Vol.43 (12), p.6350-6357
Hauptverfasser: Cooper, M. A., Michaelides, K., Siegert, M. J., Bamber, J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subglacial topography exerts strong controls on glacier dynamics, influencing the orientation and velocity of ice flow, as well as modulating the distribution of basal waters and sediment. Bed geometry can also provide a long‐term record of geomorphic processes, allowing insight into landscape evolution, the origin of which may predate ice sheet inception. Here we present evidence from ice‐penetrating radar data for a large dendritic drainage network, radiating inland from Jakobshavn Isbræ, Greenland's largest outlet glacier. The size of the drainage basin is ∼450,000 km2 and accounts for about 20% of the total land area of Greenland. Topographic and basin morphometric analyses of an isostatically uplifted (ice‐free) bedrock topography suggests that this catchment predates ice sheet initiation and has likely been instrumental in controlling the location and form of the Jakobshavn ice stream, and ice flow from the deep interior to the margin, now and over several glacial cycles. Key Points Evidence for an extensive dendritic basin beneath the Greenland ice sheet's largest outlet glacier Analysis suggests a paleofluvial landscape origin, predating ice sheet inception The ancient landscape retains an influence on contemporary glacial processes
ISSN:0094-8276
1944-8007
DOI:10.1002/2016GL069458