Lazy Learning based surrogate models for air quality planning
Air pollution in atmosphere derives from complex non-linear relationships, involving anthropogenic and biogenic precursor emissions. Due to this complexity, Decision Support Systems (DSSs) are important tools to help Environmental Authorities to control/improve air quality, reducing human and ecosys...
Gespeichert in:
Veröffentlicht in: | Environmental modelling & software : with environment data news 2016-09, Vol.83, p.47-57 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | |
container_start_page | 47 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 83 |
creator | Carnevale, Claudio Finzi, Giovanna Pederzoli, Anna Turrini, Enrico Volta, Marialuisa |
description | Air pollution in atmosphere derives from complex non-linear relationships, involving anthropogenic and biogenic precursor emissions. Due to this complexity, Decision Support Systems (DSSs) are important tools to help Environmental Authorities to control/improve air quality, reducing human and ecosystems pollution impacts. DSSs implementing cost-effective or multi-objective methodologies require fast air quality models, able to properly describe the relations between emissions and air quality indexes. These, namely surrogate models (SM), are identified processing deterministic model simulation data. In this work, the Lazy Learning technique has been applied to reproduce the relations linking precursor emissions and pollutant concentrations. Since computational time has to be minimized without losing precision and accuracy, tests aimed at reducing the amount of input data have been performed on a case study over Lombardia Region in Northern Italy.
•The modellisation of PM10 concentration and emission precursors performed through simplified, computational efficient models based on Lazy Learning technique.•Good performances both in terms of computational time and models evaluation.•Comparison between Lazy Learning and Artificial Neural Network surrogate models. |
doi_str_mv | 10.1016/j.envsoft.2016.04.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835605792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815216301177</els_id><sourcerecordid>1827894271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-5a14e5e3f20a066acd5889b949ad7ad16a353917c218bbcf2607d25d1dc682243</originalsourceid><addsrcrecordid>eNqNkD1rwzAQhjW00DTtTyho7BJXkiXZHkopoV9g6NLO4iydg4JjJZIdSH99HZK9ne4OnvfleAi54yzjjOuHdYb9PoV2yMR0ZkxmTIgLMuO5louSK3FFrlNaM8amXc7IYw0_B1ojxN73K9pAQkfTGGNYwYB0Exx2ibYhUvCR7kbo_HCg2w76I39DLlvoEt6e55x8v758Ld8X9efbx_K5Xti8UMNCAZeoMG8FA6Y1WKfKsmoqWYErwHENucorXljBy6axrdCscEI57qwuhZD5nNyfercx7EZMg9n4ZLGb3sAwJsPLXGmmikr8AxVFWUlR8AlVJ9TGkFLE1myj30A8GM7M0aZZm7NNc7RpmDSTzSn3dMpNanDvMZpkPfYWnY9oB-OC_6PhF7ksgfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827894271</pqid></control><display><type>article</type><title>Lazy Learning based surrogate models for air quality planning</title><source>Elsevier ScienceDirect Journals</source><creator>Carnevale, Claudio ; Finzi, Giovanna ; Pederzoli, Anna ; Turrini, Enrico ; Volta, Marialuisa</creator><creatorcontrib>Carnevale, Claudio ; Finzi, Giovanna ; Pederzoli, Anna ; Turrini, Enrico ; Volta, Marialuisa</creatorcontrib><description>Air pollution in atmosphere derives from complex non-linear relationships, involving anthropogenic and biogenic precursor emissions. Due to this complexity, Decision Support Systems (DSSs) are important tools to help Environmental Authorities to control/improve air quality, reducing human and ecosystems pollution impacts. DSSs implementing cost-effective or multi-objective methodologies require fast air quality models, able to properly describe the relations between emissions and air quality indexes. These, namely surrogate models (SM), are identified processing deterministic model simulation data. In this work, the Lazy Learning technique has been applied to reproduce the relations linking precursor emissions and pollutant concentrations. Since computational time has to be minimized without losing precision and accuracy, tests aimed at reducing the amount of input data have been performed on a case study over Lombardia Region in Northern Italy.
•The modellisation of PM10 concentration and emission precursors performed through simplified, computational efficient models based on Lazy Learning technique.•Good performances both in terms of computational time and models evaluation.•Comparison between Lazy Learning and Artificial Neural Network surrogate models.</description><identifier>ISSN: 1364-8152</identifier><identifier>DOI: 10.1016/j.envsoft.2016.04.022</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Air pollution ; Air quality ; Atmospheric models ; Computer programs ; Computer simulation ; Design of experiment ; Lazy Learning ; Learning ; Nonlinearity ; Precursors ; Surrogate models</subject><ispartof>Environmental modelling & software : with environment data news, 2016-09, Vol.83, p.47-57</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-5a14e5e3f20a066acd5889b949ad7ad16a353917c218bbcf2607d25d1dc682243</citedby><cites>FETCH-LOGICAL-c375t-5a14e5e3f20a066acd5889b949ad7ad16a353917c218bbcf2607d25d1dc682243</cites><orcidid>0000-0002-0449-7558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsoft.2016.04.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Carnevale, Claudio</creatorcontrib><creatorcontrib>Finzi, Giovanna</creatorcontrib><creatorcontrib>Pederzoli, Anna</creatorcontrib><creatorcontrib>Turrini, Enrico</creatorcontrib><creatorcontrib>Volta, Marialuisa</creatorcontrib><title>Lazy Learning based surrogate models for air quality planning</title><title>Environmental modelling & software : with environment data news</title><description>Air pollution in atmosphere derives from complex non-linear relationships, involving anthropogenic and biogenic precursor emissions. Due to this complexity, Decision Support Systems (DSSs) are important tools to help Environmental Authorities to control/improve air quality, reducing human and ecosystems pollution impacts. DSSs implementing cost-effective or multi-objective methodologies require fast air quality models, able to properly describe the relations between emissions and air quality indexes. These, namely surrogate models (SM), are identified processing deterministic model simulation data. In this work, the Lazy Learning technique has been applied to reproduce the relations linking precursor emissions and pollutant concentrations. Since computational time has to be minimized without losing precision and accuracy, tests aimed at reducing the amount of input data have been performed on a case study over Lombardia Region in Northern Italy.
•The modellisation of PM10 concentration and emission precursors performed through simplified, computational efficient models based on Lazy Learning technique.•Good performances both in terms of computational time and models evaluation.•Comparison between Lazy Learning and Artificial Neural Network surrogate models.</description><subject>Air pollution</subject><subject>Air quality</subject><subject>Atmospheric models</subject><subject>Computer programs</subject><subject>Computer simulation</subject><subject>Design of experiment</subject><subject>Lazy Learning</subject><subject>Learning</subject><subject>Nonlinearity</subject><subject>Precursors</subject><subject>Surrogate models</subject><issn>1364-8152</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkD1rwzAQhjW00DTtTyho7BJXkiXZHkopoV9g6NLO4iydg4JjJZIdSH99HZK9ne4OnvfleAi54yzjjOuHdYb9PoV2yMR0ZkxmTIgLMuO5louSK3FFrlNaM8amXc7IYw0_B1ojxN73K9pAQkfTGGNYwYB0Exx2ibYhUvCR7kbo_HCg2w76I39DLlvoEt6e55x8v758Ld8X9efbx_K5Xti8UMNCAZeoMG8FA6Y1WKfKsmoqWYErwHENucorXljBy6axrdCscEI57qwuhZD5nNyfercx7EZMg9n4ZLGb3sAwJsPLXGmmikr8AxVFWUlR8AlVJ9TGkFLE1myj30A8GM7M0aZZm7NNc7RpmDSTzSn3dMpNanDvMZpkPfYWnY9oB-OC_6PhF7ksgfE</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Carnevale, Claudio</creator><creator>Finzi, Giovanna</creator><creator>Pederzoli, Anna</creator><creator>Turrini, Enrico</creator><creator>Volta, Marialuisa</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0449-7558</orcidid></search><sort><creationdate>201609</creationdate><title>Lazy Learning based surrogate models for air quality planning</title><author>Carnevale, Claudio ; Finzi, Giovanna ; Pederzoli, Anna ; Turrini, Enrico ; Volta, Marialuisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-5a14e5e3f20a066acd5889b949ad7ad16a353917c218bbcf2607d25d1dc682243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Air pollution</topic><topic>Air quality</topic><topic>Atmospheric models</topic><topic>Computer programs</topic><topic>Computer simulation</topic><topic>Design of experiment</topic><topic>Lazy Learning</topic><topic>Learning</topic><topic>Nonlinearity</topic><topic>Precursors</topic><topic>Surrogate models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carnevale, Claudio</creatorcontrib><creatorcontrib>Finzi, Giovanna</creatorcontrib><creatorcontrib>Pederzoli, Anna</creatorcontrib><creatorcontrib>Turrini, Enrico</creatorcontrib><creatorcontrib>Volta, Marialuisa</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carnevale, Claudio</au><au>Finzi, Giovanna</au><au>Pederzoli, Anna</au><au>Turrini, Enrico</au><au>Volta, Marialuisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lazy Learning based surrogate models for air quality planning</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2016-09</date><risdate>2016</risdate><volume>83</volume><spage>47</spage><epage>57</epage><pages>47-57</pages><issn>1364-8152</issn><abstract>Air pollution in atmosphere derives from complex non-linear relationships, involving anthropogenic and biogenic precursor emissions. Due to this complexity, Decision Support Systems (DSSs) are important tools to help Environmental Authorities to control/improve air quality, reducing human and ecosystems pollution impacts. DSSs implementing cost-effective or multi-objective methodologies require fast air quality models, able to properly describe the relations between emissions and air quality indexes. These, namely surrogate models (SM), are identified processing deterministic model simulation data. In this work, the Lazy Learning technique has been applied to reproduce the relations linking precursor emissions and pollutant concentrations. Since computational time has to be minimized without losing precision and accuracy, tests aimed at reducing the amount of input data have been performed on a case study over Lombardia Region in Northern Italy.
•The modellisation of PM10 concentration and emission precursors performed through simplified, computational efficient models based on Lazy Learning technique.•Good performances both in terms of computational time and models evaluation.•Comparison between Lazy Learning and Artificial Neural Network surrogate models.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2016.04.022</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0449-7558</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2016-09, Vol.83, p.47-57 |
issn | 1364-8152 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835605792 |
source | Elsevier ScienceDirect Journals |
subjects | Air pollution Air quality Atmospheric models Computer programs Computer simulation Design of experiment Lazy Learning Learning Nonlinearity Precursors Surrogate models |
title | Lazy Learning based surrogate models for air quality planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lazy%20Learning%20based%20surrogate%20models%20for%20air%20quality%20planning&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Carnevale,%20Claudio&rft.date=2016-09&rft.volume=83&rft.spage=47&rft.epage=57&rft.pages=47-57&rft.issn=1364-8152&rft_id=info:doi/10.1016/j.envsoft.2016.04.022&rft_dat=%3Cproquest_cross%3E1827894271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827894271&rft_id=info:pmid/&rft_els_id=S1364815216301177&rfr_iscdi=true |