Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics

In semi-arid environments there is often a lack of data on hydrological variables that limits the ability to understand key hydrological processes. In response to this need, geomorphometric analysis is a quantitative approach that has proven to be useful. This work aims to assess and classify 35 exo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth science informatics 2016-09, Vol.9 (3), p.309-324
Hauptverfasser: Genchi, Sibila A., Vitale, Alejandro J., Perillo, Gerardo M. E., Piccolo, María Cintia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 3
container_start_page 309
container_title Earth science informatics
container_volume 9
creator Genchi, Sibila A.
Vitale, Alejandro J.
Perillo, Gerardo M. E.
Piccolo, María Cintia
description In semi-arid environments there is often a lack of data on hydrological variables that limits the ability to understand key hydrological processes. In response to this need, geomorphometric analysis is a quantitative approach that has proven to be useful. This work aims to assess and classify 35 exorheic drainage basins located in a semi-arid area of Argentina (Northeastern Patagonia) according to their geomorphometric properties by using GIS technology and principal component (PCA) and cluster analysis (CA) multivariate techniques. In addition, an assessment of automated drainage network extraction accuracy was performed by comparing it with the actual drainage network. The study showed that it was possible to derive automated drainage networks with errors lower than 6 %. By comparing both PCA and CA, it was found that the former allows a good understanding of the clustering of basins from the CA. All basins were clustered into four groups following a significant spatial continuity. This type of study gives the basis for regional-scale analysis, and provides further information for subsequent modeling.
doi_str_mv 10.1007/s12145-016-0258-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835601366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835601366</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-61fb4d08d65f1842f38a138a5e7d2462aa1b4af2f374b26b94bc4c062bf84d283</originalsourceid><addsrcrecordid>eNp1kcFKxDAURYsoOOh8gLuAGzfVJE3TuBwGHYUBN7oOr21aI20y5qXC7P1wM1REBBch4eWcS8jNsgtGrxml1Q0yzkSZUyZzykuV86NswZRME6HY8c-5Kk6zJaKtacG4LDhXi-xzY_zow-7VjyYG2xBANIijcZH4jrQBrIPeENxjNCMS6wgQNKPNIdiWBNNb7w7kKvTJSTCZ0Lqe9MbjDqKFgUTvByTgWjJOQ7QfyYSYImO6xmgbPM9OOhjQLL_3s-zl_u55_ZBvnzaP69U2h6LiMZesq0VLVSvLjinBu0IBS6s0VcuF5ACsFtCleSVqLutbUTeioZLXnRItV8VZdjXn7oJ_nwxGPVpszDCAM35CzVRRSsoKKRN6-Qd981Nw6XWJSr9Hpap4othMNcEjBtPpXbAjhL1mVB-q0XM1OlWjD9Xog8NnBxPrehN-Jf8rfQECbpNO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812606872</pqid></control><display><type>article</type><title>Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics</title><source>Springer Nature - Complete Springer Journals</source><creator>Genchi, Sibila A. ; Vitale, Alejandro J. ; Perillo, Gerardo M. E. ; Piccolo, María Cintia</creator><creatorcontrib>Genchi, Sibila A. ; Vitale, Alejandro J. ; Perillo, Gerardo M. E. ; Piccolo, María Cintia</creatorcontrib><description>In semi-arid environments there is often a lack of data on hydrological variables that limits the ability to understand key hydrological processes. In response to this need, geomorphometric analysis is a quantitative approach that has proven to be useful. This work aims to assess and classify 35 exorheic drainage basins located in a semi-arid area of Argentina (Northeastern Patagonia) according to their geomorphometric properties by using GIS technology and principal component (PCA) and cluster analysis (CA) multivariate techniques. In addition, an assessment of automated drainage network extraction accuracy was performed by comparing it with the actual drainage network. The study showed that it was possible to derive automated drainage networks with errors lower than 6 %. By comparing both PCA and CA, it was found that the former allows a good understanding of the clustering of basins from the CA. All basins were clustered into four groups following a significant spatial continuity. This type of study gives the basis for regional-scale analysis, and provides further information for subsequent modeling.</description><identifier>ISSN: 1865-0473</identifier><identifier>EISSN: 1865-0481</identifier><identifier>DOI: 10.1007/s12145-016-0258-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Arid environments ; Arid zones ; Assessments ; Automation ; Basins ; Drainage ; Drainage patterns ; Drainage systems ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Geomorphology ; Geosphere ; Hydrologic data ; Hydrology ; Information Systems Applications (incl.Internet) ; Mathematical models ; Multivariate analysis ; Networks ; Ontology ; Research Article ; Semiarid environments ; Semiarid lands ; Simulation and Modeling ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Spatial analysis ; Statistical analysis</subject><ispartof>Earth science informatics, 2016-09, Vol.9 (3), p.309-324</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-61fb4d08d65f1842f38a138a5e7d2462aa1b4af2f374b26b94bc4c062bf84d283</citedby><cites>FETCH-LOGICAL-a372t-61fb4d08d65f1842f38a138a5e7d2462aa1b4af2f374b26b94bc4c062bf84d283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12145-016-0258-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12145-016-0258-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Genchi, Sibila A.</creatorcontrib><creatorcontrib>Vitale, Alejandro J.</creatorcontrib><creatorcontrib>Perillo, Gerardo M. E.</creatorcontrib><creatorcontrib>Piccolo, María Cintia</creatorcontrib><title>Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics</title><title>Earth science informatics</title><addtitle>Earth Sci Inform</addtitle><description>In semi-arid environments there is often a lack of data on hydrological variables that limits the ability to understand key hydrological processes. In response to this need, geomorphometric analysis is a quantitative approach that has proven to be useful. This work aims to assess and classify 35 exorheic drainage basins located in a semi-arid area of Argentina (Northeastern Patagonia) according to their geomorphometric properties by using GIS technology and principal component (PCA) and cluster analysis (CA) multivariate techniques. In addition, an assessment of automated drainage network extraction accuracy was performed by comparing it with the actual drainage network. The study showed that it was possible to derive automated drainage networks with errors lower than 6 %. By comparing both PCA and CA, it was found that the former allows a good understanding of the clustering of basins from the CA. All basins were clustered into four groups following a significant spatial continuity. This type of study gives the basis for regional-scale analysis, and provides further information for subsequent modeling.</description><subject>Arid environments</subject><subject>Arid zones</subject><subject>Assessments</subject><subject>Automation</subject><subject>Basins</subject><subject>Drainage</subject><subject>Drainage patterns</subject><subject>Drainage systems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Geomorphology</subject><subject>Geosphere</subject><subject>Hydrologic data</subject><subject>Hydrology</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Mathematical models</subject><subject>Multivariate analysis</subject><subject>Networks</subject><subject>Ontology</subject><subject>Research Article</subject><subject>Semiarid environments</subject><subject>Semiarid lands</subject><subject>Simulation and Modeling</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Spatial analysis</subject><subject>Statistical analysis</subject><issn>1865-0473</issn><issn>1865-0481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcFKxDAURYsoOOh8gLuAGzfVJE3TuBwGHYUBN7oOr21aI20y5qXC7P1wM1REBBch4eWcS8jNsgtGrxml1Q0yzkSZUyZzykuV86NswZRME6HY8c-5Kk6zJaKtacG4LDhXi-xzY_zow-7VjyYG2xBANIijcZH4jrQBrIPeENxjNCMS6wgQNKPNIdiWBNNb7w7kKvTJSTCZ0Lqe9MbjDqKFgUTvByTgWjJOQ7QfyYSYImO6xmgbPM9OOhjQLL_3s-zl_u55_ZBvnzaP69U2h6LiMZesq0VLVSvLjinBu0IBS6s0VcuF5ACsFtCleSVqLutbUTeioZLXnRItV8VZdjXn7oJ_nwxGPVpszDCAM35CzVRRSsoKKRN6-Qd981Nw6XWJSr9Hpap4othMNcEjBtPpXbAjhL1mVB-q0XM1OlWjD9Xog8NnBxPrehN-Jf8rfQECbpNO</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Genchi, Sibila A.</creator><creator>Vitale, Alejandro J.</creator><creator>Perillo, Gerardo M. E.</creator><creator>Piccolo, María Cintia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics</title><author>Genchi, Sibila A. ; Vitale, Alejandro J. ; Perillo, Gerardo M. E. ; Piccolo, María Cintia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-61fb4d08d65f1842f38a138a5e7d2462aa1b4af2f374b26b94bc4c062bf84d283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arid environments</topic><topic>Arid zones</topic><topic>Assessments</topic><topic>Automation</topic><topic>Basins</topic><topic>Drainage</topic><topic>Drainage patterns</topic><topic>Drainage systems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Geomorphology</topic><topic>Geosphere</topic><topic>Hydrologic data</topic><topic>Hydrology</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Mathematical models</topic><topic>Multivariate analysis</topic><topic>Networks</topic><topic>Ontology</topic><topic>Research Article</topic><topic>Semiarid environments</topic><topic>Semiarid lands</topic><topic>Simulation and Modeling</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Spatial analysis</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Genchi, Sibila A.</creatorcontrib><creatorcontrib>Vitale, Alejandro J.</creatorcontrib><creatorcontrib>Perillo, Gerardo M. E.</creatorcontrib><creatorcontrib>Piccolo, María Cintia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Earth science informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Genchi, Sibila A.</au><au>Vitale, Alejandro J.</au><au>Perillo, Gerardo M. E.</au><au>Piccolo, María Cintia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics</atitle><jtitle>Earth science informatics</jtitle><stitle>Earth Sci Inform</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>9</volume><issue>3</issue><spage>309</spage><epage>324</epage><pages>309-324</pages><issn>1865-0473</issn><eissn>1865-0481</eissn><abstract>In semi-arid environments there is often a lack of data on hydrological variables that limits the ability to understand key hydrological processes. In response to this need, geomorphometric analysis is a quantitative approach that has proven to be useful. This work aims to assess and classify 35 exorheic drainage basins located in a semi-arid area of Argentina (Northeastern Patagonia) according to their geomorphometric properties by using GIS technology and principal component (PCA) and cluster analysis (CA) multivariate techniques. In addition, an assessment of automated drainage network extraction accuracy was performed by comparing it with the actual drainage network. The study showed that it was possible to derive automated drainage networks with errors lower than 6 %. By comparing both PCA and CA, it was found that the former allows a good understanding of the clustering of basins from the CA. All basins were clustered into four groups following a significant spatial continuity. This type of study gives the basis for regional-scale analysis, and provides further information for subsequent modeling.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12145-016-0258-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1865-0473
ispartof Earth science informatics, 2016-09, Vol.9 (3), p.309-324
issn 1865-0473
1865-0481
language eng
recordid cdi_proquest_miscellaneous_1835601366
source Springer Nature - Complete Springer Journals
subjects Arid environments
Arid zones
Assessments
Automation
Basins
Drainage
Drainage patterns
Drainage systems
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Geomorphology
Geosphere
Hydrologic data
Hydrology
Information Systems Applications (incl.Internet)
Mathematical models
Multivariate analysis
Networks
Ontology
Research Article
Semiarid environments
Semiarid lands
Simulation and Modeling
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Spatial analysis
Statistical analysis
title Geomorphometric assessment of drainage systems in a semi-arid region of Argentina using geospatial tools and multivariate statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geomorphometric%20assessment%20of%20drainage%20systems%20in%20a%20semi-arid%20region%20of%20Argentina%20using%20geospatial%20tools%20and%20multivariate%20statistics&rft.jtitle=Earth%20science%20informatics&rft.au=Genchi,%20Sibila%20A.&rft.date=2016-09-01&rft.volume=9&rft.issue=3&rft.spage=309&rft.epage=324&rft.pages=309-324&rft.issn=1865-0473&rft.eissn=1865-0481&rft_id=info:doi/10.1007/s12145-016-0258-2&rft_dat=%3Cproquest_cross%3E1835601366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812606872&rft_id=info:pmid/&rfr_iscdi=true