Failure load prediction of adhesively bonded pultruded composites using artificial neural network
Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (sing...
Gespeichert in:
Veröffentlicht in: | Journal of composite materials 2016-09, Vol.50 (23), p.3267-3281 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3281 |
---|---|
container_issue | 23 |
container_start_page | 3267 |
container_title | Journal of composite materials |
container_volume | 50 |
creator | Balciolu, H Ersen Seckin, A Cadas Aktas, Mehmet |
description | Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (single side and double side) and patching structure on the failure load were investigated in the pultruded composite specimens. For this aim, the pultruded composite specimens, which bonded with five different bonding angles (45°, 51°, 59°, 68° and 90°) and five different bonding types as unpatched, single-side woven patch, single-side knitting patch, double-side woven patch and double-side knitting patch were exposed to tensile loads at room temperature. In the view of experimental results, the failure loads of bonded pultruded composite specimens were predicted by training six different artificial neural network algorithms. The only three best prediction results of Bayesian regularization, Levenberg–Marquardt and scaled conjugate gradient were given in the figures for better understanding. |
doi_str_mv | 10.1177/0021998315617998 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835599221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0021998315617998</sage_id><sourcerecordid>1835599221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-731eb6d4b0ccc15fc3562112d69016565c203917a0714c4e5d963321fcafc5473</originalsourceid><addsrcrecordid>eNp1ULFOwzAUtBBIlMLO6JEl4BfHdj2iigJSJRaQ2CLXeSkublzsGNS_J6FMSEx30t09vTtCLoFdAyh1w1gJWs84CAlqIEdkAoKzQmn-ekwmo1yM-ik5S2nDGFNQyQkxC-N8jkh9MA3dRWyc7V3oaGipad4wuU_0e7oKXYODnn0f88hs2O5Ccj0mmpPr1tTE3rXOOuNphzn-QP8V4vs5OWmNT3jxi1Pysrh7nj8Uy6f7x_ntsrAcqr5QHHAlm2rFrLUgWsuFLAHKRmoGUkhhS8Y1KDM-bisUjZacl9Ba01pRKT4lV4e7uxg-Mqa-3rpk0XvTYciphhkXQuuyhMHKDlYbQ0oR23oX3dbEfQ2sHtes_645RIpDJJk11puQYzeU-d__DfxsdVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835599221</pqid></control><display><type>article</type><title>Failure load prediction of adhesively bonded pultruded composites using artificial neural network</title><source>SAGE Complete A-Z List</source><creator>Balciolu, H Ersen ; Seckin, A Cadas ; Aktas, Mehmet</creator><creatorcontrib>Balciolu, H Ersen ; Seckin, A Cadas ; Aktas, Mehmet</creatorcontrib><description>Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (single side and double side) and patching structure on the failure load were investigated in the pultruded composite specimens. For this aim, the pultruded composite specimens, which bonded with five different bonding angles (45°, 51°, 59°, 68° and 90°) and five different bonding types as unpatched, single-side woven patch, single-side knitting patch, double-side woven patch and double-side knitting patch were exposed to tensile loads at room temperature. In the view of experimental results, the failure loads of bonded pultruded composite specimens were predicted by training six different artificial neural network algorithms. The only three best prediction results of Bayesian regularization, Levenberg–Marquardt and scaled conjugate gradient were given in the figures for better understanding.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/0021998315617998</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adhesive bonding ; Artificial neural networks ; Bonding ; Failure ; Knitting ; Mechanical joining ; Patching ; Polymer matrix composites</subject><ispartof>Journal of composite materials, 2016-09, Vol.50 (23), p.3267-3281</ispartof><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-731eb6d4b0ccc15fc3562112d69016565c203917a0714c4e5d963321fcafc5473</citedby><cites>FETCH-LOGICAL-c314t-731eb6d4b0ccc15fc3562112d69016565c203917a0714c4e5d963321fcafc5473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0021998315617998$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0021998315617998$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21806,27911,27912,43608,43609</link.rule.ids></links><search><creatorcontrib>Balciolu, H Ersen</creatorcontrib><creatorcontrib>Seckin, A Cadas</creatorcontrib><creatorcontrib>Aktas, Mehmet</creatorcontrib><title>Failure load prediction of adhesively bonded pultruded composites using artificial neural network</title><title>Journal of composite materials</title><description>Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (single side and double side) and patching structure on the failure load were investigated in the pultruded composite specimens. For this aim, the pultruded composite specimens, which bonded with five different bonding angles (45°, 51°, 59°, 68° and 90°) and five different bonding types as unpatched, single-side woven patch, single-side knitting patch, double-side woven patch and double-side knitting patch were exposed to tensile loads at room temperature. In the view of experimental results, the failure loads of bonded pultruded composite specimens were predicted by training six different artificial neural network algorithms. The only three best prediction results of Bayesian regularization, Levenberg–Marquardt and scaled conjugate gradient were given in the figures for better understanding.</description><subject>Adhesive bonding</subject><subject>Artificial neural networks</subject><subject>Bonding</subject><subject>Failure</subject><subject>Knitting</subject><subject>Mechanical joining</subject><subject>Patching</subject><subject>Polymer matrix composites</subject><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1ULFOwzAUtBBIlMLO6JEl4BfHdj2iigJSJRaQ2CLXeSkublzsGNS_J6FMSEx30t09vTtCLoFdAyh1w1gJWs84CAlqIEdkAoKzQmn-ekwmo1yM-ik5S2nDGFNQyQkxC-N8jkh9MA3dRWyc7V3oaGipad4wuU_0e7oKXYODnn0f88hs2O5Ccj0mmpPr1tTE3rXOOuNphzn-QP8V4vs5OWmNT3jxi1Pysrh7nj8Uy6f7x_ntsrAcqr5QHHAlm2rFrLUgWsuFLAHKRmoGUkhhS8Y1KDM-bisUjZacl9Ba01pRKT4lV4e7uxg-Mqa-3rpk0XvTYciphhkXQuuyhMHKDlYbQ0oR23oX3dbEfQ2sHtes_645RIpDJJk11puQYzeU-d__DfxsdVk</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Balciolu, H Ersen</creator><creator>Seckin, A Cadas</creator><creator>Aktas, Mehmet</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201609</creationdate><title>Failure load prediction of adhesively bonded pultruded composites using artificial neural network</title><author>Balciolu, H Ersen ; Seckin, A Cadas ; Aktas, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-731eb6d4b0ccc15fc3562112d69016565c203917a0714c4e5d963321fcafc5473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adhesive bonding</topic><topic>Artificial neural networks</topic><topic>Bonding</topic><topic>Failure</topic><topic>Knitting</topic><topic>Mechanical joining</topic><topic>Patching</topic><topic>Polymer matrix composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balciolu, H Ersen</creatorcontrib><creatorcontrib>Seckin, A Cadas</creatorcontrib><creatorcontrib>Aktas, Mehmet</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balciolu, H Ersen</au><au>Seckin, A Cadas</au><au>Aktas, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure load prediction of adhesively bonded pultruded composites using artificial neural network</atitle><jtitle>Journal of composite materials</jtitle><date>2016-09</date><risdate>2016</risdate><volume>50</volume><issue>23</issue><spage>3267</spage><epage>3281</epage><pages>3267-3281</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><abstract>Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (single side and double side) and patching structure on the failure load were investigated in the pultruded composite specimens. For this aim, the pultruded composite specimens, which bonded with five different bonding angles (45°, 51°, 59°, 68° and 90°) and five different bonding types as unpatched, single-side woven patch, single-side knitting patch, double-side woven patch and double-side knitting patch were exposed to tensile loads at room temperature. In the view of experimental results, the failure loads of bonded pultruded composite specimens were predicted by training six different artificial neural network algorithms. The only three best prediction results of Bayesian regularization, Levenberg–Marquardt and scaled conjugate gradient were given in the figures for better understanding.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0021998315617998</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9983 |
ispartof | Journal of composite materials, 2016-09, Vol.50 (23), p.3267-3281 |
issn | 0021-9983 1530-793X |
language | eng |
recordid | cdi_proquest_miscellaneous_1835599221 |
source | SAGE Complete A-Z List |
subjects | Adhesive bonding Artificial neural networks Bonding Failure Knitting Mechanical joining Patching Polymer matrix composites |
title | Failure load prediction of adhesively bonded pultruded composites using artificial neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20load%20prediction%20of%20adhesively%20bonded%20pultruded%20composites%20using%20artificial%20neural%20network&rft.jtitle=Journal%20of%20composite%20materials&rft.au=Balciolu,%20H%20Ersen&rft.date=2016-09&rft.volume=50&rft.issue=23&rft.spage=3267&rft.epage=3281&rft.pages=3267-3281&rft.issn=0021-9983&rft.eissn=1530-793X&rft_id=info:doi/10.1177/0021998315617998&rft_dat=%3Cproquest_cross%3E1835599221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835599221&rft_id=info:pmid/&rft_sage_id=10.1177_0021998315617998&rfr_iscdi=true |