Failure load prediction of adhesively bonded pultruded composites using artificial neural network

Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (sing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composite materials 2016-09, Vol.50 (23), p.3267-3281
Hauptverfasser: Balciolu, H Ersen, Seckin, A Cadas, Aktas, Mehmet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3281
container_issue 23
container_start_page 3267
container_title Journal of composite materials
container_volume 50
creator Balciolu, H Ersen
Seckin, A Cadas
Aktas, Mehmet
description Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (single side and double side) and patching structure on the failure load were investigated in the pultruded composite specimens. For this aim, the pultruded composite specimens, which bonded with five different bonding angles (45°, 51°, 59°, 68° and 90°) and five different bonding types as unpatched, single-side woven patch, single-side knitting patch, double-side woven patch and double-side knitting patch were exposed to tensile loads at room temperature. In the view of experimental results, the failure loads of bonded pultruded composite specimens were predicted by training six different artificial neural network algorithms. The only three best prediction results of Bayesian regularization, Levenberg–Marquardt and scaled conjugate gradient were given in the figures for better understanding.
doi_str_mv 10.1177/0021998315617998
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835599221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0021998315617998</sage_id><sourcerecordid>1835599221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-731eb6d4b0ccc15fc3562112d69016565c203917a0714c4e5d963321fcafc5473</originalsourceid><addsrcrecordid>eNp1ULFOwzAUtBBIlMLO6JEl4BfHdj2iigJSJRaQ2CLXeSkublzsGNS_J6FMSEx30t09vTtCLoFdAyh1w1gJWs84CAlqIEdkAoKzQmn-ekwmo1yM-ik5S2nDGFNQyQkxC-N8jkh9MA3dRWyc7V3oaGipad4wuU_0e7oKXYODnn0f88hs2O5Ccj0mmpPr1tTE3rXOOuNphzn-QP8V4vs5OWmNT3jxi1Pysrh7nj8Uy6f7x_ntsrAcqr5QHHAlm2rFrLUgWsuFLAHKRmoGUkhhS8Y1KDM-bisUjZacl9Ba01pRKT4lV4e7uxg-Mqa-3rpk0XvTYciphhkXQuuyhMHKDlYbQ0oR23oX3dbEfQ2sHtes_645RIpDJJk11puQYzeU-d__DfxsdVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835599221</pqid></control><display><type>article</type><title>Failure load prediction of adhesively bonded pultruded composites using artificial neural network</title><source>SAGE Complete A-Z List</source><creator>Balciolu, H Ersen ; Seckin, A Cadas ; Aktas, Mehmet</creator><creatorcontrib>Balciolu, H Ersen ; Seckin, A Cadas ; Aktas, Mehmet</creatorcontrib><description>Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (single side and double side) and patching structure on the failure load were investigated in the pultruded composite specimens. For this aim, the pultruded composite specimens, which bonded with five different bonding angles (45°, 51°, 59°, 68° and 90°) and five different bonding types as unpatched, single-side woven patch, single-side knitting patch, double-side woven patch and double-side knitting patch were exposed to tensile loads at room temperature. In the view of experimental results, the failure loads of bonded pultruded composite specimens were predicted by training six different artificial neural network algorithms. The only three best prediction results of Bayesian regularization, Levenberg–Marquardt and scaled conjugate gradient were given in the figures for better understanding.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/0021998315617998</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adhesive bonding ; Artificial neural networks ; Bonding ; Failure ; Knitting ; Mechanical joining ; Patching ; Polymer matrix composites</subject><ispartof>Journal of composite materials, 2016-09, Vol.50 (23), p.3267-3281</ispartof><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-731eb6d4b0ccc15fc3562112d69016565c203917a0714c4e5d963321fcafc5473</citedby><cites>FETCH-LOGICAL-c314t-731eb6d4b0ccc15fc3562112d69016565c203917a0714c4e5d963321fcafc5473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0021998315617998$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0021998315617998$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21806,27911,27912,43608,43609</link.rule.ids></links><search><creatorcontrib>Balciolu, H Ersen</creatorcontrib><creatorcontrib>Seckin, A Cadas</creatorcontrib><creatorcontrib>Aktas, Mehmet</creatorcontrib><title>Failure load prediction of adhesively bonded pultruded composites using artificial neural network</title><title>Journal of composite materials</title><description>Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (single side and double side) and patching structure on the failure load were investigated in the pultruded composite specimens. For this aim, the pultruded composite specimens, which bonded with five different bonding angles (45°, 51°, 59°, 68° and 90°) and five different bonding types as unpatched, single-side woven patch, single-side knitting patch, double-side woven patch and double-side knitting patch were exposed to tensile loads at room temperature. In the view of experimental results, the failure loads of bonded pultruded composite specimens were predicted by training six different artificial neural network algorithms. The only three best prediction results of Bayesian regularization, Levenberg–Marquardt and scaled conjugate gradient were given in the figures for better understanding.</description><subject>Adhesive bonding</subject><subject>Artificial neural networks</subject><subject>Bonding</subject><subject>Failure</subject><subject>Knitting</subject><subject>Mechanical joining</subject><subject>Patching</subject><subject>Polymer matrix composites</subject><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1ULFOwzAUtBBIlMLO6JEl4BfHdj2iigJSJRaQ2CLXeSkublzsGNS_J6FMSEx30t09vTtCLoFdAyh1w1gJWs84CAlqIEdkAoKzQmn-ekwmo1yM-ik5S2nDGFNQyQkxC-N8jkh9MA3dRWyc7V3oaGipad4wuU_0e7oKXYODnn0f88hs2O5Ccj0mmpPr1tTE3rXOOuNphzn-QP8V4vs5OWmNT3jxi1Pysrh7nj8Uy6f7x_ntsrAcqr5QHHAlm2rFrLUgWsuFLAHKRmoGUkhhS8Y1KDM-bisUjZacl9Ba01pRKT4lV4e7uxg-Mqa-3rpk0XvTYciphhkXQuuyhMHKDlYbQ0oR23oX3dbEfQ2sHtes_645RIpDJJk11puQYzeU-d__DfxsdVk</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Balciolu, H Ersen</creator><creator>Seckin, A Cadas</creator><creator>Aktas, Mehmet</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201609</creationdate><title>Failure load prediction of adhesively bonded pultruded composites using artificial neural network</title><author>Balciolu, H Ersen ; Seckin, A Cadas ; Aktas, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-731eb6d4b0ccc15fc3562112d69016565c203917a0714c4e5d963321fcafc5473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adhesive bonding</topic><topic>Artificial neural networks</topic><topic>Bonding</topic><topic>Failure</topic><topic>Knitting</topic><topic>Mechanical joining</topic><topic>Patching</topic><topic>Polymer matrix composites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balciolu, H Ersen</creatorcontrib><creatorcontrib>Seckin, A Cadas</creatorcontrib><creatorcontrib>Aktas, Mehmet</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balciolu, H Ersen</au><au>Seckin, A Cadas</au><au>Aktas, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Failure load prediction of adhesively bonded pultruded composites using artificial neural network</atitle><jtitle>Journal of composite materials</jtitle><date>2016-09</date><risdate>2016</risdate><volume>50</volume><issue>23</issue><spage>3267</spage><epage>3281</epage><pages>3267-3281</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><abstract>Mechanical joining and adhesive bonding provide convenience for manufacturing of complex structures, which made of composite materials. Failure load is directly related with process parameters of mechanical joining or adhesive bonding. In this study, the effects of bonding angle, patching type (single side and double side) and patching structure on the failure load were investigated in the pultruded composite specimens. For this aim, the pultruded composite specimens, which bonded with five different bonding angles (45°, 51°, 59°, 68° and 90°) and five different bonding types as unpatched, single-side woven patch, single-side knitting patch, double-side woven patch and double-side knitting patch were exposed to tensile loads at room temperature. In the view of experimental results, the failure loads of bonded pultruded composite specimens were predicted by training six different artificial neural network algorithms. The only three best prediction results of Bayesian regularization, Levenberg–Marquardt and scaled conjugate gradient were given in the figures for better understanding.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0021998315617998</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9983
ispartof Journal of composite materials, 2016-09, Vol.50 (23), p.3267-3281
issn 0021-9983
1530-793X
language eng
recordid cdi_proquest_miscellaneous_1835599221
source SAGE Complete A-Z List
subjects Adhesive bonding
Artificial neural networks
Bonding
Failure
Knitting
Mechanical joining
Patching
Polymer matrix composites
title Failure load prediction of adhesively bonded pultruded composites using artificial neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Failure%20load%20prediction%20of%20adhesively%20bonded%20pultruded%20composites%20using%20artificial%20neural%20network&rft.jtitle=Journal%20of%20composite%20materials&rft.au=Balciolu,%20H%20Ersen&rft.date=2016-09&rft.volume=50&rft.issue=23&rft.spage=3267&rft.epage=3281&rft.pages=3267-3281&rft.issn=0021-9983&rft.eissn=1530-793X&rft_id=info:doi/10.1177/0021998315617998&rft_dat=%3Cproquest_cross%3E1835599221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835599221&rft_id=info:pmid/&rft_sage_id=10.1177_0021998315617998&rfr_iscdi=true