Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-06, Vol.93 (11), Article 114025
Hauptverfasser: Molnár, Etele, Niemi, Harri, Rischke, Dirk H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physical review. D
container_volume 93
creator Molnár, Etele
Niemi, Harri
Rischke, Dirk H.
description Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, [functionof] sub(0k), which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from [functionof] sub(0k). Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.
doi_str_mv 10.1103/PhysRevD.93.114025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835598567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835598567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-6228e43d135ae6ff414198c8e0f83ba2bfa359c09b573b860e79f19fb6e1a4473</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EElXpH2DyyJLiz8QeoeVLqkSFYLac5LVqlMSpnVQqv56WAtOd7k43PAhdUzKnlPDb9Waf3mC3nGt-CARh8gxNmChIRgjT5_-ekks0S-mTHGxOdEHpBK2XEP3ODj50ODhsO5_CEEPvK1z7lHx_qHaAXTP6Gtf7zra-StjF0OJhA_g-NMNXa7sOw3b8eblCF842CWa_OkUfjw_vi-ds9fr0srhbZRVTZMhyxhQIXlMuLeTOCSqoVpUC4hQvLSud5VJXRJey4KXKCRTaUe3KHKgVouBTdHP67WPYjpAG0_pUQdPYDsKYDFVcSq1kfpyy07SKIaUIzvTRtzbuDSXmSND8ETSamxNB_g0BsGal</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835598567</pqid></control><display><type>article</type><title>Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation</title><source>American Physical Society Journals</source><creator>Molnár, Etele ; Niemi, Harri ; Rischke, Dirk H.</creator><creatorcontrib>Molnár, Etele ; Niemi, Harri ; Rischke, Dirk H.</creatorcontrib><description>Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, [functionof] sub(0k), which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from [functionof] sub(0k). Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.93.114025</identifier><language>eng</language><subject>Anisotropy ; Boltzmann equation ; Boltzmann transport equation ; Dissipation ; Distribution functions ; Equations of motion ; Fluid dynamics ; Mathematical analysis</subject><ispartof>Physical review. D, 2016-06, Vol.93 (11), Article 114025</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-6228e43d135ae6ff414198c8e0f83ba2bfa359c09b573b860e79f19fb6e1a4473</citedby><cites>FETCH-LOGICAL-c280t-6228e43d135ae6ff414198c8e0f83ba2bfa359c09b573b860e79f19fb6e1a4473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27922,27923</link.rule.ids></links><search><creatorcontrib>Molnár, Etele</creatorcontrib><creatorcontrib>Niemi, Harri</creatorcontrib><creatorcontrib>Rischke, Dirk H.</creatorcontrib><title>Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation</title><title>Physical review. D</title><description>Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, [functionof] sub(0k), which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from [functionof] sub(0k). Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.</description><subject>Anisotropy</subject><subject>Boltzmann equation</subject><subject>Boltzmann transport equation</subject><subject>Dissipation</subject><subject>Distribution functions</subject><subject>Equations of motion</subject><subject>Fluid dynamics</subject><subject>Mathematical analysis</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EElXpH2DyyJLiz8QeoeVLqkSFYLac5LVqlMSpnVQqv56WAtOd7k43PAhdUzKnlPDb9Waf3mC3nGt-CARh8gxNmChIRgjT5_-ekks0S-mTHGxOdEHpBK2XEP3ODj50ODhsO5_CEEPvK1z7lHx_qHaAXTP6Gtf7zra-StjF0OJhA_g-NMNXa7sOw3b8eblCF842CWa_OkUfjw_vi-ds9fr0srhbZRVTZMhyxhQIXlMuLeTOCSqoVpUC4hQvLSud5VJXRJey4KXKCRTaUe3KHKgVouBTdHP67WPYjpAG0_pUQdPYDsKYDFVcSq1kfpyy07SKIaUIzvTRtzbuDSXmSND8ETSamxNB_g0BsGal</recordid><startdate>20160622</startdate><enddate>20160622</enddate><creator>Molnár, Etele</creator><creator>Niemi, Harri</creator><creator>Rischke, Dirk H.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160622</creationdate><title>Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation</title><author>Molnár, Etele ; Niemi, Harri ; Rischke, Dirk H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-6228e43d135ae6ff414198c8e0f83ba2bfa359c09b573b860e79f19fb6e1a4473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Boltzmann equation</topic><topic>Boltzmann transport equation</topic><topic>Dissipation</topic><topic>Distribution functions</topic><topic>Equations of motion</topic><topic>Fluid dynamics</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molnár, Etele</creatorcontrib><creatorcontrib>Niemi, Harri</creatorcontrib><creatorcontrib>Rischke, Dirk H.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molnár, Etele</au><au>Niemi, Harri</au><au>Rischke, Dirk H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation</atitle><jtitle>Physical review. D</jtitle><date>2016-06-22</date><risdate>2016</risdate><volume>93</volume><issue>11</issue><artnum>114025</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, [functionof] sub(0k), which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from [functionof] sub(0k). Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.</abstract><doi>10.1103/PhysRevD.93.114025</doi></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2016-06, Vol.93 (11), Article 114025
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_miscellaneous_1835598567
source American Physical Society Journals
subjects Anisotropy
Boltzmann equation
Boltzmann transport equation
Dissipation
Distribution functions
Equations of motion
Fluid dynamics
Mathematical analysis
title Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20anisotropic%20dissipative%20fluid%20dynamics%20from%20the%20Boltzmann%20equation&rft.jtitle=Physical%20review.%20D&rft.au=Moln%C3%A1r,%20Etele&rft.date=2016-06-22&rft.volume=93&rft.issue=11&rft.artnum=114025&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.93.114025&rft_dat=%3Cproquest_cross%3E1835598567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835598567&rft_id=info:pmid/&rfr_iscdi=true