Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling

This work designs a new electrochemical sensing platform for the quantitative monitoring of mercury ion (Hg2+) on poly-T(15) oligonucleotide-functionalized graphene oxide by coupling with DNase I-assisted target recycling amplification. The assay was carried out on the basis of T-Hg2+-T coordination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2016-11, Vol.85, p.267-271
Hauptverfasser: Lu, Minghua, Xiao, Rui, Zhang, Xiaona, Niu, Jiahua, Zhang, Xiaoting, Wang, Youmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue
container_start_page 267
container_title Biosensors & bioelectronics
container_volume 85
creator Lu, Minghua
Xiao, Rui
Zhang, Xiaona
Niu, Jiahua
Zhang, Xiaoting
Wang, Youmei
description This work designs a new electrochemical sensing platform for the quantitative monitoring of mercury ion (Hg2+) on poly-T(15) oligonucleotide-functionalized graphene oxide by coupling with DNase I-assisted target recycling amplification. The assay was carried out on the basis of T-Hg2+-T coordination chemistry by using target-induced dissociation of indicator-labeled poly-T(15) oligonucleotide from graphene oxide nanosheets. The electronic signal was amplified through DNase I-triggered target recycling. Experimental results indicated that the amperometric response of DNA-based sensing platform deceased with the increasing Hg2+ concentration in the sample, and has a detection limit of 0.12nM with a dynamic working range of up to 50nM. Our strategy afforded exquisite selectivity for Hg2+ against other environmentally related metal ions. More significantly, this methodology displayed high reproducibility and acceptable accuracy, thus representing an optional sensing scheme for the screening of Hg2+ in environmental water samples. •We constructed an in-situ amplified sensing protocol for target Hg2+.•T-Hg2+-T coordination chemistry was utilized during the measurement.•DNase I-triggered target recycling was used for signal amplification.•Target-induced oligonucleotide dissociation was employed from graphene oxide.
doi_str_mv 10.1016/j.bios.2016.05.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835598082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566316304559</els_id><sourcerecordid>1815708166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-f45acd91b8b1d01f63b41207326233068f0351d6fc0bea9bc436e2a4d884acea3</originalsourceid><addsrcrecordid>eNqNkTFvEzEYhi0EoqHwBxiQxzJc-GyffT6JpSqFRqrKArPl832XOLo7p7YT6NpfjqMURtTFtuTnfYf3IeQ9gyUDpj5tl50PacnLewlyCbx5QRZMN6KquZAvyQJaqSqplDgjb1LaAkDDWnhNznjDmvLXLMjjXTjgSHFEl2NwG5y8syNNOCc_r-lutHkIcaLloPd7O2efbfYHpFOYfQ7xCIWB3qwvVquPNMz0y91lZVPCqRuxp-todxuckYbfvkf6y-cNzTauMdOI7sGNJf-WvBrsmPDd031Ofn69_nF1U91-_7a6urytXM15roZaWte3rNMd64ENSnQ149AIrrgQoPQAQrJeDQ46tG3naqGQ27rXurYOrTgnF6feXQz3e0zZTD45HEc7Y9gnw7SQstWg-TNQJhvQrEz7DJTxVukWCspPqIshpYiD2UU_2fhgGJijUbM1R6PmaNSANMVoCX146t93E_b_In8VFuDzCcCy3cFjNMl5nB32vkycTR_8__r_APMzsw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811296890</pqid></control><display><type>article</type><title>Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lu, Minghua ; Xiao, Rui ; Zhang, Xiaona ; Niu, Jiahua ; Zhang, Xiaoting ; Wang, Youmei</creator><creatorcontrib>Lu, Minghua ; Xiao, Rui ; Zhang, Xiaona ; Niu, Jiahua ; Zhang, Xiaoting ; Wang, Youmei</creatorcontrib><description>This work designs a new electrochemical sensing platform for the quantitative monitoring of mercury ion (Hg2+) on poly-T(15) oligonucleotide-functionalized graphene oxide by coupling with DNase I-assisted target recycling amplification. The assay was carried out on the basis of T-Hg2+-T coordination chemistry by using target-induced dissociation of indicator-labeled poly-T(15) oligonucleotide from graphene oxide nanosheets. The electronic signal was amplified through DNase I-triggered target recycling. Experimental results indicated that the amperometric response of DNA-based sensing platform deceased with the increasing Hg2+ concentration in the sample, and has a detection limit of 0.12nM with a dynamic working range of up to 50nM. Our strategy afforded exquisite selectivity for Hg2+ against other environmentally related metal ions. More significantly, this methodology displayed high reproducibility and acceptable accuracy, thus representing an optional sensing scheme for the screening of Hg2+ in environmental water samples. •We constructed an in-situ amplified sensing protocol for target Hg2+.•T-Hg2+-T coordination chemistry was utilized during the measurement.•DNase I-triggered target recycling was used for signal amplification.•Target-induced oligonucleotide dissociation was employed from graphene oxide.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2016.05.027</identifier><identifier>PMID: 27179567</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Amplification ; Biosensing Techniques - methods ; Cations, Divalent - analysis ; Deoxyribonuclease I - chemistry ; Detection ; DNA - chemistry ; DNase I ; Electrochemical sensor ; Electrochemical Techniques - methods ; Environmental Monitoring - methods ; Graphene ; Graphene oxide ; Graphite - chemistry ; Limit of Detection ; Mercury (metal) ; Mercury - analysis ; Mercury ion ; Models, Molecular ; Monitoring ; Oxides ; Platforms ; Poly-T oligonucleotide ; Recycling ; Reproducibility of Results ; Target recycling ; Thymine - chemistry ; Water - analysis ; Water Pollutants, Chemical - analysis</subject><ispartof>Biosensors &amp; bioelectronics, 2016-11, Vol.85, p.267-271</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-f45acd91b8b1d01f63b41207326233068f0351d6fc0bea9bc436e2a4d884acea3</citedby><cites>FETCH-LOGICAL-c422t-f45acd91b8b1d01f63b41207326233068f0351d6fc0bea9bc436e2a4d884acea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0956566316304559$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27179567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Minghua</creatorcontrib><creatorcontrib>Xiao, Rui</creatorcontrib><creatorcontrib>Zhang, Xiaona</creatorcontrib><creatorcontrib>Niu, Jiahua</creatorcontrib><creatorcontrib>Zhang, Xiaoting</creatorcontrib><creatorcontrib>Wang, Youmei</creatorcontrib><title>Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>This work designs a new electrochemical sensing platform for the quantitative monitoring of mercury ion (Hg2+) on poly-T(15) oligonucleotide-functionalized graphene oxide by coupling with DNase I-assisted target recycling amplification. The assay was carried out on the basis of T-Hg2+-T coordination chemistry by using target-induced dissociation of indicator-labeled poly-T(15) oligonucleotide from graphene oxide nanosheets. The electronic signal was amplified through DNase I-triggered target recycling. Experimental results indicated that the amperometric response of DNA-based sensing platform deceased with the increasing Hg2+ concentration in the sample, and has a detection limit of 0.12nM with a dynamic working range of up to 50nM. Our strategy afforded exquisite selectivity for Hg2+ against other environmentally related metal ions. More significantly, this methodology displayed high reproducibility and acceptable accuracy, thus representing an optional sensing scheme for the screening of Hg2+ in environmental water samples. •We constructed an in-situ amplified sensing protocol for target Hg2+.•T-Hg2+-T coordination chemistry was utilized during the measurement.•DNase I-triggered target recycling was used for signal amplification.•Target-induced oligonucleotide dissociation was employed from graphene oxide.</description><subject>Amplification</subject><subject>Biosensing Techniques - methods</subject><subject>Cations, Divalent - analysis</subject><subject>Deoxyribonuclease I - chemistry</subject><subject>Detection</subject><subject>DNA - chemistry</subject><subject>DNase I</subject><subject>Electrochemical sensor</subject><subject>Electrochemical Techniques - methods</subject><subject>Environmental Monitoring - methods</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>Graphite - chemistry</subject><subject>Limit of Detection</subject><subject>Mercury (metal)</subject><subject>Mercury - analysis</subject><subject>Mercury ion</subject><subject>Models, Molecular</subject><subject>Monitoring</subject><subject>Oxides</subject><subject>Platforms</subject><subject>Poly-T oligonucleotide</subject><subject>Recycling</subject><subject>Reproducibility of Results</subject><subject>Target recycling</subject><subject>Thymine - chemistry</subject><subject>Water - analysis</subject><subject>Water Pollutants, Chemical - analysis</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTFvEzEYhi0EoqHwBxiQxzJc-GyffT6JpSqFRqrKArPl832XOLo7p7YT6NpfjqMURtTFtuTnfYf3IeQ9gyUDpj5tl50PacnLewlyCbx5QRZMN6KquZAvyQJaqSqplDgjb1LaAkDDWnhNznjDmvLXLMjjXTjgSHFEl2NwG5y8syNNOCc_r-lutHkIcaLloPd7O2efbfYHpFOYfQ7xCIWB3qwvVquPNMz0y91lZVPCqRuxp-todxuckYbfvkf6y-cNzTauMdOI7sGNJf-WvBrsmPDd031Ofn69_nF1U91-_7a6urytXM15roZaWte3rNMd64ENSnQ149AIrrgQoPQAQrJeDQ46tG3naqGQ27rXurYOrTgnF6feXQz3e0zZTD45HEc7Y9gnw7SQstWg-TNQJhvQrEz7DJTxVukWCspPqIshpYiD2UU_2fhgGJijUbM1R6PmaNSANMVoCX146t93E_b_In8VFuDzCcCy3cFjNMl5nB32vkycTR_8__r_APMzsw8</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Lu, Minghua</creator><creator>Xiao, Rui</creator><creator>Zhang, Xiaona</creator><creator>Niu, Jiahua</creator><creator>Zhang, Xiaoting</creator><creator>Wang, Youmei</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20161115</creationdate><title>Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling</title><author>Lu, Minghua ; Xiao, Rui ; Zhang, Xiaona ; Niu, Jiahua ; Zhang, Xiaoting ; Wang, Youmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-f45acd91b8b1d01f63b41207326233068f0351d6fc0bea9bc436e2a4d884acea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplification</topic><topic>Biosensing Techniques - methods</topic><topic>Cations, Divalent - analysis</topic><topic>Deoxyribonuclease I - chemistry</topic><topic>Detection</topic><topic>DNA - chemistry</topic><topic>DNase I</topic><topic>Electrochemical sensor</topic><topic>Electrochemical Techniques - methods</topic><topic>Environmental Monitoring - methods</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>Graphite - chemistry</topic><topic>Limit of Detection</topic><topic>Mercury (metal)</topic><topic>Mercury - analysis</topic><topic>Mercury ion</topic><topic>Models, Molecular</topic><topic>Monitoring</topic><topic>Oxides</topic><topic>Platforms</topic><topic>Poly-T oligonucleotide</topic><topic>Recycling</topic><topic>Reproducibility of Results</topic><topic>Target recycling</topic><topic>Thymine - chemistry</topic><topic>Water - analysis</topic><topic>Water Pollutants, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Minghua</creatorcontrib><creatorcontrib>Xiao, Rui</creatorcontrib><creatorcontrib>Zhang, Xiaona</creatorcontrib><creatorcontrib>Niu, Jiahua</creatorcontrib><creatorcontrib>Zhang, Xiaoting</creatorcontrib><creatorcontrib>Wang, Youmei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Minghua</au><au>Xiao, Rui</au><au>Zhang, Xiaona</au><au>Niu, Jiahua</au><au>Zhang, Xiaoting</au><au>Wang, Youmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2016-11-15</date><risdate>2016</risdate><volume>85</volume><spage>267</spage><epage>271</epage><pages>267-271</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>This work designs a new electrochemical sensing platform for the quantitative monitoring of mercury ion (Hg2+) on poly-T(15) oligonucleotide-functionalized graphene oxide by coupling with DNase I-assisted target recycling amplification. The assay was carried out on the basis of T-Hg2+-T coordination chemistry by using target-induced dissociation of indicator-labeled poly-T(15) oligonucleotide from graphene oxide nanosheets. The electronic signal was amplified through DNase I-triggered target recycling. Experimental results indicated that the amperometric response of DNA-based sensing platform deceased with the increasing Hg2+ concentration in the sample, and has a detection limit of 0.12nM with a dynamic working range of up to 50nM. Our strategy afforded exquisite selectivity for Hg2+ against other environmentally related metal ions. More significantly, this methodology displayed high reproducibility and acceptable accuracy, thus representing an optional sensing scheme for the screening of Hg2+ in environmental water samples. •We constructed an in-situ amplified sensing protocol for target Hg2+.•T-Hg2+-T coordination chemistry was utilized during the measurement.•DNase I-triggered target recycling was used for signal amplification.•Target-induced oligonucleotide dissociation was employed from graphene oxide.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>27179567</pmid><doi>10.1016/j.bios.2016.05.027</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2016-11, Vol.85, p.267-271
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1835598082
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amplification
Biosensing Techniques - methods
Cations, Divalent - analysis
Deoxyribonuclease I - chemistry
Detection
DNA - chemistry
DNase I
Electrochemical sensor
Electrochemical Techniques - methods
Environmental Monitoring - methods
Graphene
Graphene oxide
Graphite - chemistry
Limit of Detection
Mercury (metal)
Mercury - analysis
Mercury ion
Models, Molecular
Monitoring
Oxides
Platforms
Poly-T oligonucleotide
Recycling
Reproducibility of Results
Target recycling
Thymine - chemistry
Water - analysis
Water Pollutants, Chemical - analysis
title Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20electrochemical%20sensing%20platform%20for%20quantitative%20monitoring%20of%20Hg(II)%20on%20DNA-assembled%20graphene%20oxide%20with%20target%20recycling&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Lu,%20Minghua&rft.date=2016-11-15&rft.volume=85&rft.spage=267&rft.epage=271&rft.pages=267-271&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2016.05.027&rft_dat=%3Cproquest_cross%3E1815708166%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811296890&rft_id=info:pmid/27179567&rft_els_id=S0956566316304559&rfr_iscdi=true