Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli

ABSTRACT 1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2014-07, Vol.111 (7), p.1374-1384
Hauptverfasser: Hwang, Hee Jin, Park, Jin Hwan, Kim, Jin Ho, Kong, Min Kyung, Kim, Jin Won, Park, Jin Woo, Cho, Kwang Myung, Lee, Pyung Cheon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1384
container_issue 7
container_start_page 1374
container_title Biotechnology and bioengineering
container_volume 111
creator Hwang, Hee Jin
Park, Jin Hwan
Kim, Jin Ho
Kong, Min Kyung
Kim, Jin Won
Park, Jin Woo
Cho, Kwang Myung
Lee, Pyung Cheon
description ABSTRACT 1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the final two reactions in the 1,4‐BDO pathway. To fit Bld into the non‐natural 1,4‐BDO pathway, we engineered it through random mutagenesis. Five Bld mutants were then isolated using a colorimetric Schiff's reagent‐based method. Subsequent site‐directed mutagenesis of Bld generated the two best Bld mutants, L273I and L273T, which produced 1,4‐BDO titers fourfold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titers obtained using L273I and L273T clearly correlated with their enhanced activities, which were caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)] coexpressing Bld273T+Bdh. Biotechnol. Bioeng. 2014;111: 1374–1384. © 2014 Wiley Periodicals, Inc. In this study, the authors selected Butyraldehyde dehydrogenase (Bld) and engineered Bld to be fit into the non‐natural 1,4‐BDO pathway through random mutagenesis. Subsequent site‐directed mutagenesis of Bld generated the best Bld mutant L273T, which produced 1,4‐BDO titers 4‐fold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titer obtained using L273T clearly correlated with its enhanced activity, which was caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)].
doi_str_mv 10.1002/bit.25196
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835595954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835595954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4946-b78c1233ce106edf49b536fa5414137dda304b8dc66f69c50c88a775334e84b93</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxYModq0--AUk4IuC0yaTPzN5tMu6LRTdh4rgS8gkd3ZTZydrMkOdL-LnNdvd9kEQJA-XkN8594SD0GtKzigh5Xnjh7NSUCWfoBklqipIqchTNCOEyIIJVZ6gFynd5mtVS_kcnZScc8UrOUO_F_3a9wDR92scWmxwMw5TNJ2DzeQA348Y1tCbBHtg3oU0RO_8uMXJWLsxMewg7lWdsTCE3tv8NATc-gGbHsNxAThMP_Aig6YH50OHd2bY3JkJ-x4vkt3kDHbjDbah8y_Rs9Z0CV4d5yn6-mlxM78srr8sr-Yfrwub88uiqWpLS8YsUCLBtVw1gsnWCE45ZZVzhhHe1M5K2UplBbF1bapKMMah5o1ip-jdwXcXw88R0qC3PlnoupwxjEnTmgmh8uH_g5Yll0rIjL79C70NY-zzRzQVTLBaCL6n3h8oG0NKEVq9i35r4qQp0ftede5V3_ea2TdHx7HZgnskH4rMwPkBuPMdTP920hdXNw-WxUHh0wC_HhUm_tCyYpXQ3z4v9Wq1uvh-SZe6ZH8AVUO9Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535385546</pqid></control><display><type>article</type><title>Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Hwang, Hee Jin ; Park, Jin Hwan ; Kim, Jin Ho ; Kong, Min Kyung ; Kim, Jin Won ; Park, Jin Woo ; Cho, Kwang Myung ; Lee, Pyung Cheon</creator><creatorcontrib>Hwang, Hee Jin ; Park, Jin Hwan ; Kim, Jin Ho ; Kong, Min Kyung ; Kim, Jin Won ; Park, Jin Woo ; Cho, Kwang Myung ; Lee, Pyung Cheon</creatorcontrib><description>ABSTRACT 1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the final two reactions in the 1,4‐BDO pathway. To fit Bld into the non‐natural 1,4‐BDO pathway, we engineered it through random mutagenesis. Five Bld mutants were then isolated using a colorimetric Schiff's reagent‐based method. Subsequent site‐directed mutagenesis of Bld generated the two best Bld mutants, L273I and L273T, which produced 1,4‐BDO titers fourfold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titers obtained using L273I and L273T clearly correlated with their enhanced activities, which were caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)] coexpressing Bld273T+Bdh. Biotechnol. Bioeng. 2014;111: 1374–1384. © 2014 Wiley Periodicals, Inc. In this study, the authors selected Butyraldehyde dehydrogenase (Bld) and engineered Bld to be fit into the non‐natural 1,4‐BDO pathway through random mutagenesis. Subsequent site‐directed mutagenesis of Bld generated the best Bld mutant L273T, which produced 1,4‐BDO titers 4‐fold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titer obtained using L273T clearly correlated with its enhanced activity, which was caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)].</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.25196</identifier><identifier>PMID: 24449476</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>1,4‐butanediol ; 4-butanediol ; Aldehyde Oxidoreductases - genetics ; Aldehyde Oxidoreductases - metabolism ; Amino acids ; Biochemistry ; Bioengineering ; Biotechnology ; Butylene Glycols - metabolism ; Butyraldehyde ; butyraldehyde dehydrogenase ; Chemical reactions ; Clostridium ; Clostridium - enzymology ; Clostridium - genetics ; Clostridium saccharoperbutylacetonicum ; Dehydrogenase ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gram-positive bacteria ; metabolic engineering ; Metabolic Engineering - methods ; Metabolic Networks and Pathways - genetics ; Mutagenesis ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Mutations ; Pathways</subject><ispartof>Biotechnology and bioengineering, 2014-07, Vol.111 (7), p.1374-1384</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4946-b78c1233ce106edf49b536fa5414137dda304b8dc66f69c50c88a775334e84b93</citedby><cites>FETCH-LOGICAL-c4946-b78c1233ce106edf49b536fa5414137dda304b8dc66f69c50c88a775334e84b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.25196$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.25196$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24449476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Hee Jin</creatorcontrib><creatorcontrib>Park, Jin Hwan</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Kong, Min Kyung</creatorcontrib><creatorcontrib>Kim, Jin Won</creatorcontrib><creatorcontrib>Park, Jin Woo</creatorcontrib><creatorcontrib>Cho, Kwang Myung</creatorcontrib><creatorcontrib>Lee, Pyung Cheon</creatorcontrib><title>Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>ABSTRACT 1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the final two reactions in the 1,4‐BDO pathway. To fit Bld into the non‐natural 1,4‐BDO pathway, we engineered it through random mutagenesis. Five Bld mutants were then isolated using a colorimetric Schiff's reagent‐based method. Subsequent site‐directed mutagenesis of Bld generated the two best Bld mutants, L273I and L273T, which produced 1,4‐BDO titers fourfold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titers obtained using L273I and L273T clearly correlated with their enhanced activities, which were caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)] coexpressing Bld273T+Bdh. Biotechnol. Bioeng. 2014;111: 1374–1384. © 2014 Wiley Periodicals, Inc. In this study, the authors selected Butyraldehyde dehydrogenase (Bld) and engineered Bld to be fit into the non‐natural 1,4‐BDO pathway through random mutagenesis. Subsequent site‐directed mutagenesis of Bld generated the best Bld mutant L273T, which produced 1,4‐BDO titers 4‐fold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titer obtained using L273T clearly correlated with its enhanced activity, which was caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)].</description><subject>1,4‐butanediol</subject><subject>4-butanediol</subject><subject>Aldehyde Oxidoreductases - genetics</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Butylene Glycols - metabolism</subject><subject>Butyraldehyde</subject><subject>butyraldehyde dehydrogenase</subject><subject>Chemical reactions</subject><subject>Clostridium</subject><subject>Clostridium - enzymology</subject><subject>Clostridium - genetics</subject><subject>Clostridium saccharoperbutylacetonicum</subject><subject>Dehydrogenase</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gram-positive bacteria</subject><subject>metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Mutagenesis</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutations</subject><subject>Pathways</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9rFDEUxYModq0--AUk4IuC0yaTPzN5tMu6LRTdh4rgS8gkd3ZTZydrMkOdL-LnNdvd9kEQJA-XkN8594SD0GtKzigh5Xnjh7NSUCWfoBklqipIqchTNCOEyIIJVZ6gFynd5mtVS_kcnZScc8UrOUO_F_3a9wDR92scWmxwMw5TNJ2DzeQA348Y1tCbBHtg3oU0RO_8uMXJWLsxMewg7lWdsTCE3tv8NATc-gGbHsNxAThMP_Aig6YH50OHd2bY3JkJ-x4vkt3kDHbjDbah8y_Rs9Z0CV4d5yn6-mlxM78srr8sr-Yfrwub88uiqWpLS8YsUCLBtVw1gsnWCE45ZZVzhhHe1M5K2UplBbF1bapKMMah5o1ip-jdwXcXw88R0qC3PlnoupwxjEnTmgmh8uH_g5Yll0rIjL79C70NY-zzRzQVTLBaCL6n3h8oG0NKEVq9i35r4qQp0ftede5V3_ea2TdHx7HZgnskH4rMwPkBuPMdTP920hdXNw-WxUHh0wC_HhUm_tCyYpXQ3z4v9Wq1uvh-SZe6ZH8AVUO9Fw</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Hwang, Hee Jin</creator><creator>Park, Jin Hwan</creator><creator>Kim, Jin Ho</creator><creator>Kong, Min Kyung</creator><creator>Kim, Jin Won</creator><creator>Park, Jin Woo</creator><creator>Cho, Kwang Myung</creator><creator>Lee, Pyung Cheon</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>201407</creationdate><title>Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli</title><author>Hwang, Hee Jin ; Park, Jin Hwan ; Kim, Jin Ho ; Kong, Min Kyung ; Kim, Jin Won ; Park, Jin Woo ; Cho, Kwang Myung ; Lee, Pyung Cheon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4946-b78c1233ce106edf49b536fa5414137dda304b8dc66f69c50c88a775334e84b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>1,4‐butanediol</topic><topic>4-butanediol</topic><topic>Aldehyde Oxidoreductases - genetics</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Butylene Glycols - metabolism</topic><topic>Butyraldehyde</topic><topic>butyraldehyde dehydrogenase</topic><topic>Chemical reactions</topic><topic>Clostridium</topic><topic>Clostridium - enzymology</topic><topic>Clostridium - genetics</topic><topic>Clostridium saccharoperbutylacetonicum</topic><topic>Dehydrogenase</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gram-positive bacteria</topic><topic>metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Mutagenesis</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutations</topic><topic>Pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Hee Jin</creatorcontrib><creatorcontrib>Park, Jin Hwan</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Kong, Min Kyung</creatorcontrib><creatorcontrib>Kim, Jin Won</creatorcontrib><creatorcontrib>Park, Jin Woo</creatorcontrib><creatorcontrib>Cho, Kwang Myung</creatorcontrib><creatorcontrib>Lee, Pyung Cheon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Hee Jin</au><au>Park, Jin Hwan</au><au>Kim, Jin Ho</au><au>Kong, Min Kyung</au><au>Kim, Jin Won</au><au>Park, Jin Woo</au><au>Cho, Kwang Myung</au><au>Lee, Pyung Cheon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2014-07</date><risdate>2014</risdate><volume>111</volume><issue>7</issue><spage>1374</spage><epage>1384</epage><pages>1374-1384</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT 1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the final two reactions in the 1,4‐BDO pathway. To fit Bld into the non‐natural 1,4‐BDO pathway, we engineered it through random mutagenesis. Five Bld mutants were then isolated using a colorimetric Schiff's reagent‐based method. Subsequent site‐directed mutagenesis of Bld generated the two best Bld mutants, L273I and L273T, which produced 1,4‐BDO titers fourfold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titers obtained using L273I and L273T clearly correlated with their enhanced activities, which were caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)] coexpressing Bld273T+Bdh. Biotechnol. Bioeng. 2014;111: 1374–1384. © 2014 Wiley Periodicals, Inc. In this study, the authors selected Butyraldehyde dehydrogenase (Bld) and engineered Bld to be fit into the non‐natural 1,4‐BDO pathway through random mutagenesis. Subsequent site‐directed mutagenesis of Bld generated the best Bld mutant L273T, which produced 1,4‐BDO titers 4‐fold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titer obtained using L273T clearly correlated with its enhanced activity, which was caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)].</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24449476</pmid><doi>10.1002/bit.25196</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2014-07, Vol.111 (7), p.1374-1384
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_1835595954
source Wiley-Blackwell Journals; MEDLINE
subjects 1,4‐butanediol
4-butanediol
Aldehyde Oxidoreductases - genetics
Aldehyde Oxidoreductases - metabolism
Amino acids
Biochemistry
Bioengineering
Biotechnology
Butylene Glycols - metabolism
Butyraldehyde
butyraldehyde dehydrogenase
Chemical reactions
Clostridium
Clostridium - enzymology
Clostridium - genetics
Clostridium saccharoperbutylacetonicum
Dehydrogenase
E coli
Enzymes
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Gram-positive bacteria
metabolic engineering
Metabolic Engineering - methods
Metabolic Networks and Pathways - genetics
Mutagenesis
Mutant Proteins - genetics
Mutant Proteins - metabolism
Mutations
Pathways
title Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20a%20butyraldehyde%20dehydrogenase%20of%20Clostridium%20saccharoperbutylacetonicum%20to%20fit%20an%20engineered%201,4-butanediol%20pathway%20in%20Escherichia%20coli&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Hwang,%20Hee%20Jin&rft.date=2014-07&rft.volume=111&rft.issue=7&rft.spage=1374&rft.epage=1384&rft.pages=1374-1384&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.25196&rft_dat=%3Cproquest_cross%3E1835595954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535385546&rft_id=info:pmid/24449476&rfr_iscdi=true