Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli
ABSTRACT 1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2014-07, Vol.111 (7), p.1374-1384 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1384 |
---|---|
container_issue | 7 |
container_start_page | 1374 |
container_title | Biotechnology and bioengineering |
container_volume | 111 |
creator | Hwang, Hee Jin Park, Jin Hwan Kim, Jin Ho Kong, Min Kyung Kim, Jin Won Park, Jin Woo Cho, Kwang Myung Lee, Pyung Cheon |
description | ABSTRACT
1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the final two reactions in the 1,4‐BDO pathway. To fit Bld into the non‐natural 1,4‐BDO pathway, we engineered it through random mutagenesis. Five Bld mutants were then isolated using a colorimetric Schiff's reagent‐based method. Subsequent site‐directed mutagenesis of Bld generated the two best Bld mutants, L273I and L273T, which produced 1,4‐BDO titers fourfold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titers obtained using L273I and L273T clearly correlated with their enhanced activities, which were caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)] coexpressing Bld273T+Bdh. Biotechnol. Bioeng. 2014;111: 1374–1384. © 2014 Wiley Periodicals, Inc.
In this study, the authors selected Butyraldehyde dehydrogenase (Bld) and engineered Bld to be fit into the non‐natural 1,4‐BDO pathway through random mutagenesis. Subsequent site‐directed mutagenesis of Bld generated the best Bld mutant L273T, which produced 1,4‐BDO titers 4‐fold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titer obtained using L273T clearly correlated with its enhanced activity, which was caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)]. |
doi_str_mv | 10.1002/bit.25196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835595954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835595954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4946-b78c1233ce106edf49b536fa5414137dda304b8dc66f69c50c88a775334e84b93</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxYModq0--AUk4IuC0yaTPzN5tMu6LRTdh4rgS8gkd3ZTZydrMkOdL-LnNdvd9kEQJA-XkN8594SD0GtKzigh5Xnjh7NSUCWfoBklqipIqchTNCOEyIIJVZ6gFynd5mtVS_kcnZScc8UrOUO_F_3a9wDR92scWmxwMw5TNJ2DzeQA348Y1tCbBHtg3oU0RO_8uMXJWLsxMewg7lWdsTCE3tv8NATc-gGbHsNxAThMP_Aig6YH50OHd2bY3JkJ-x4vkt3kDHbjDbah8y_Rs9Z0CV4d5yn6-mlxM78srr8sr-Yfrwub88uiqWpLS8YsUCLBtVw1gsnWCE45ZZVzhhHe1M5K2UplBbF1bapKMMah5o1ip-jdwXcXw88R0qC3PlnoupwxjEnTmgmh8uH_g5Yll0rIjL79C70NY-zzRzQVTLBaCL6n3h8oG0NKEVq9i35r4qQp0ftede5V3_ea2TdHx7HZgnskH4rMwPkBuPMdTP920hdXNw-WxUHh0wC_HhUm_tCyYpXQ3z4v9Wq1uvh-SZe6ZH8AVUO9Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535385546</pqid></control><display><type>article</type><title>Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Hwang, Hee Jin ; Park, Jin Hwan ; Kim, Jin Ho ; Kong, Min Kyung ; Kim, Jin Won ; Park, Jin Woo ; Cho, Kwang Myung ; Lee, Pyung Cheon</creator><creatorcontrib>Hwang, Hee Jin ; Park, Jin Hwan ; Kim, Jin Ho ; Kong, Min Kyung ; Kim, Jin Won ; Park, Jin Woo ; Cho, Kwang Myung ; Lee, Pyung Cheon</creatorcontrib><description>ABSTRACT
1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the final two reactions in the 1,4‐BDO pathway. To fit Bld into the non‐natural 1,4‐BDO pathway, we engineered it through random mutagenesis. Five Bld mutants were then isolated using a colorimetric Schiff's reagent‐based method. Subsequent site‐directed mutagenesis of Bld generated the two best Bld mutants, L273I and L273T, which produced 1,4‐BDO titers fourfold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titers obtained using L273I and L273T clearly correlated with their enhanced activities, which were caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)] coexpressing Bld273T+Bdh. Biotechnol. Bioeng. 2014;111: 1374–1384. © 2014 Wiley Periodicals, Inc.
In this study, the authors selected Butyraldehyde dehydrogenase (Bld) and engineered Bld to be fit into the non‐natural 1,4‐BDO pathway through random mutagenesis. Subsequent site‐directed mutagenesis of Bld generated the best Bld mutant L273T, which produced 1,4‐BDO titers 4‐fold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titer obtained using L273T clearly correlated with its enhanced activity, which was caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)].</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.25196</identifier><identifier>PMID: 24449476</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>1,4‐butanediol ; 4-butanediol ; Aldehyde Oxidoreductases - genetics ; Aldehyde Oxidoreductases - metabolism ; Amino acids ; Biochemistry ; Bioengineering ; Biotechnology ; Butylene Glycols - metabolism ; Butyraldehyde ; butyraldehyde dehydrogenase ; Chemical reactions ; Clostridium ; Clostridium - enzymology ; Clostridium - genetics ; Clostridium saccharoperbutylacetonicum ; Dehydrogenase ; E coli ; Enzymes ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gram-positive bacteria ; metabolic engineering ; Metabolic Engineering - methods ; Metabolic Networks and Pathways - genetics ; Mutagenesis ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; Mutations ; Pathways</subject><ispartof>Biotechnology and bioengineering, 2014-07, Vol.111 (7), p.1374-1384</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Jul 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4946-b78c1233ce106edf49b536fa5414137dda304b8dc66f69c50c88a775334e84b93</citedby><cites>FETCH-LOGICAL-c4946-b78c1233ce106edf49b536fa5414137dda304b8dc66f69c50c88a775334e84b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.25196$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.25196$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24449476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Hee Jin</creatorcontrib><creatorcontrib>Park, Jin Hwan</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Kong, Min Kyung</creatorcontrib><creatorcontrib>Kim, Jin Won</creatorcontrib><creatorcontrib>Park, Jin Woo</creatorcontrib><creatorcontrib>Cho, Kwang Myung</creatorcontrib><creatorcontrib>Lee, Pyung Cheon</creatorcontrib><title>Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>ABSTRACT
1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the final two reactions in the 1,4‐BDO pathway. To fit Bld into the non‐natural 1,4‐BDO pathway, we engineered it through random mutagenesis. Five Bld mutants were then isolated using a colorimetric Schiff's reagent‐based method. Subsequent site‐directed mutagenesis of Bld generated the two best Bld mutants, L273I and L273T, which produced 1,4‐BDO titers fourfold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titers obtained using L273I and L273T clearly correlated with their enhanced activities, which were caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)] coexpressing Bld273T+Bdh. Biotechnol. Bioeng. 2014;111: 1374–1384. © 2014 Wiley Periodicals, Inc.
In this study, the authors selected Butyraldehyde dehydrogenase (Bld) and engineered Bld to be fit into the non‐natural 1,4‐BDO pathway through random mutagenesis. Subsequent site‐directed mutagenesis of Bld generated the best Bld mutant L273T, which produced 1,4‐BDO titers 4‐fold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titer obtained using L273T clearly correlated with its enhanced activity, which was caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)].</description><subject>1,4‐butanediol</subject><subject>4-butanediol</subject><subject>Aldehyde Oxidoreductases - genetics</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Butylene Glycols - metabolism</subject><subject>Butyraldehyde</subject><subject>butyraldehyde dehydrogenase</subject><subject>Chemical reactions</subject><subject>Clostridium</subject><subject>Clostridium - enzymology</subject><subject>Clostridium - genetics</subject><subject>Clostridium saccharoperbutylacetonicum</subject><subject>Dehydrogenase</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gram-positive bacteria</subject><subject>metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Mutagenesis</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutations</subject><subject>Pathways</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV9rFDEUxYModq0--AUk4IuC0yaTPzN5tMu6LRTdh4rgS8gkd3ZTZydrMkOdL-LnNdvd9kEQJA-XkN8594SD0GtKzigh5Xnjh7NSUCWfoBklqipIqchTNCOEyIIJVZ6gFynd5mtVS_kcnZScc8UrOUO_F_3a9wDR92scWmxwMw5TNJ2DzeQA348Y1tCbBHtg3oU0RO_8uMXJWLsxMewg7lWdsTCE3tv8NATc-gGbHsNxAThMP_Aig6YH50OHd2bY3JkJ-x4vkt3kDHbjDbah8y_Rs9Z0CV4d5yn6-mlxM78srr8sr-Yfrwub88uiqWpLS8YsUCLBtVw1gsnWCE45ZZVzhhHe1M5K2UplBbF1bapKMMah5o1ip-jdwXcXw88R0qC3PlnoupwxjEnTmgmh8uH_g5Yll0rIjL79C70NY-zzRzQVTLBaCL6n3h8oG0NKEVq9i35r4qQp0ftede5V3_ea2TdHx7HZgnskH4rMwPkBuPMdTP920hdXNw-WxUHh0wC_HhUm_tCyYpXQ3z4v9Wq1uvh-SZe6ZH8AVUO9Fw</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Hwang, Hee Jin</creator><creator>Park, Jin Hwan</creator><creator>Kim, Jin Ho</creator><creator>Kong, Min Kyung</creator><creator>Kim, Jin Won</creator><creator>Park, Jin Woo</creator><creator>Cho, Kwang Myung</creator><creator>Lee, Pyung Cheon</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7ST</scope><scope>SOI</scope></search><sort><creationdate>201407</creationdate><title>Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli</title><author>Hwang, Hee Jin ; Park, Jin Hwan ; Kim, Jin Ho ; Kong, Min Kyung ; Kim, Jin Won ; Park, Jin Woo ; Cho, Kwang Myung ; Lee, Pyung Cheon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4946-b78c1233ce106edf49b536fa5414137dda304b8dc66f69c50c88a775334e84b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>1,4‐butanediol</topic><topic>4-butanediol</topic><topic>Aldehyde Oxidoreductases - genetics</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Butylene Glycols - metabolism</topic><topic>Butyraldehyde</topic><topic>butyraldehyde dehydrogenase</topic><topic>Chemical reactions</topic><topic>Clostridium</topic><topic>Clostridium - enzymology</topic><topic>Clostridium - genetics</topic><topic>Clostridium saccharoperbutylacetonicum</topic><topic>Dehydrogenase</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gram-positive bacteria</topic><topic>metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Mutagenesis</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutations</topic><topic>Pathways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Hee Jin</creatorcontrib><creatorcontrib>Park, Jin Hwan</creatorcontrib><creatorcontrib>Kim, Jin Ho</creatorcontrib><creatorcontrib>Kong, Min Kyung</creatorcontrib><creatorcontrib>Kim, Jin Won</creatorcontrib><creatorcontrib>Park, Jin Woo</creatorcontrib><creatorcontrib>Cho, Kwang Myung</creatorcontrib><creatorcontrib>Lee, Pyung Cheon</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Hee Jin</au><au>Park, Jin Hwan</au><au>Kim, Jin Ho</au><au>Kong, Min Kyung</au><au>Kim, Jin Won</au><au>Park, Jin Woo</au><au>Cho, Kwang Myung</au><au>Lee, Pyung Cheon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2014-07</date><risdate>2014</risdate><volume>111</volume><issue>7</issue><spage>1374</spage><epage>1384</epage><pages>1374-1384</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT
1,4‐Butanediol (1,4‐BDO) is currently produced from succinate via six enzymatic reactions in an engineered Escherichia coli strain. Butyraldehyde dehydrogenase (Bld) and butanol dehydrogenase of Clostridium saccharoperbutylacetonicum were selected based on their activities of catalyzing the final two reactions in the 1,4‐BDO pathway. To fit Bld into the non‐natural 1,4‐BDO pathway, we engineered it through random mutagenesis. Five Bld mutants were then isolated using a colorimetric Schiff's reagent‐based method. Subsequent site‐directed mutagenesis of Bld generated the two best Bld mutants, L273I and L273T, which produced 1,4‐BDO titers fourfold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titers obtained using L273I and L273T clearly correlated with their enhanced activities, which were caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)] coexpressing Bld273T+Bdh. Biotechnol. Bioeng. 2014;111: 1374–1384. © 2014 Wiley Periodicals, Inc.
In this study, the authors selected Butyraldehyde dehydrogenase (Bld) and engineered Bld to be fit into the non‐natural 1,4‐BDO pathway through random mutagenesis. Subsequent site‐directed mutagenesis of Bld generated the best Bld mutant L273T, which produced 1,4‐BDO titers 4‐fold greater than those of wild‐type Bld. The enhanced 1,4‐BDO titer obtained using L273T clearly correlated with its enhanced activity, which was caused by amino acid mutations at position 273 of Bld. The highest titer of 1,4‐BDO (660 ± 40 mg/L) was obtained in a knock‐out E. coli strain [ΔldhA ΔpflB ΔadhE ΔlpdA::K. lpd(E354K) Δmdh ΔarcA gltA(R164L)].</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24449476</pmid><doi>10.1002/bit.25196</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2014-07, Vol.111 (7), p.1374-1384 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835595954 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | 1,4‐butanediol 4-butanediol Aldehyde Oxidoreductases - genetics Aldehyde Oxidoreductases - metabolism Amino acids Biochemistry Bioengineering Biotechnology Butylene Glycols - metabolism Butyraldehyde butyraldehyde dehydrogenase Chemical reactions Clostridium Clostridium - enzymology Clostridium - genetics Clostridium saccharoperbutylacetonicum Dehydrogenase E coli Enzymes Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Gram-positive bacteria metabolic engineering Metabolic Engineering - methods Metabolic Networks and Pathways - genetics Mutagenesis Mutant Proteins - genetics Mutant Proteins - metabolism Mutations Pathways |
title | Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20a%20butyraldehyde%20dehydrogenase%20of%20Clostridium%20saccharoperbutylacetonicum%20to%20fit%20an%20engineered%201,4-butanediol%20pathway%20in%20Escherichia%20coli&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Hwang,%20Hee%20Jin&rft.date=2014-07&rft.volume=111&rft.issue=7&rft.spage=1374&rft.epage=1384&rft.pages=1374-1384&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.25196&rft_dat=%3Cproquest_cross%3E1835595954%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535385546&rft_id=info:pmid/24449476&rfr_iscdi=true |