Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet
In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivativ...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2017-01, Vol.309, p.493-510 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | |
container_start_page | 493 |
container_title | Journal of computational and applied mathematics |
container_volume | 309 |
creator | Rahimkhani, P. Ordokhani, Y. Babolian, E. |
description | In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivative we will use Caputo sense by using Riemann–Liouville fractional integral operator. First, the generalized fractional-order Bernoulli wavelets are constructed. Then, these functions and their properties are employed to derive the GFBWFs operational matrices of fractional integration and pantograph. The operational matrices of integral and pantograph are utilized to reduce the problem to a set of algebraic equations. Finally, some examples are included for demonstrating the validity and applicability of our method. |
doi_str_mv | 10.1016/j.cam.2016.06.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835595143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716302758</els_id><sourcerecordid>1835595143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-437a0f62418136d874e8a64f5df052bfb7fb81a459779cf177680f2b1402b0823</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLg-vEDvOXopetLmzYpnlT8AtGLnkOavqxZss2atMr6682yHjwJA-8xzAzMEHLGYM6ANRfLudGreZnfOWRAvUdmTIq2YELIfTKDSogCeCkOyVFKSwBoWsZn5Pt5WmF0Rnuagp9GFwYaLLVRm-2f6bUexrCIev1Oe2ctRhxGl3n8mPRWkmi3oVNyw4IucMCovfvG_k9CEWKPkV5jHMLkvaNf-hM9jifkwGqf8PT3HpO3u9vXm4fi6eX-8ebqqTCVqMaCV0KDbUrOJKuaXgqOUjfc1r2FuuxsJ2wnmeZ1K0RrbO7bSLBlxziUHciyOibnu9x1DB8TplGtXDLovR4wTEkxWdV1WzNeZSnbSU0MKUW0ah3dSseNYqC2O6ulyjur7c4KMqDOnsudB3OHT4dRJeNwMNi7iGZUfXD_uH8AfvWIQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835595143</pqid></control><display><type>article</type><title>Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Rahimkhani, P. ; Ordokhani, Y. ; Babolian, E.</creator><creatorcontrib>Rahimkhani, P. ; Ordokhani, Y. ; Babolian, E.</creatorcontrib><description>In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivative we will use Caputo sense by using Riemann–Liouville fractional integral operator. First, the generalized fractional-order Bernoulli wavelets are constructed. Then, these functions and their properties are employed to derive the GFBWFs operational matrices of fractional integration and pantograph. The operational matrices of integral and pantograph are utilized to reduce the problem to a set of algebraic equations. Finally, some examples are included for demonstrating the validity and applicability of our method.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.06.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Caputo derivative ; Collocation method ; Derivatives ; Differential equations ; Fractional pantograph differential equations ; Generalized fractional-order Bernoulli wavelet ; Integrals ; Mathematical analysis ; Mathematical models ; Numerical solution ; Operational matrix ; Operators (mathematics) ; Pantographs ; Wavelet</subject><ispartof>Journal of computational and applied mathematics, 2017-01, Vol.309, p.493-510</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-437a0f62418136d874e8a64f5df052bfb7fb81a459779cf177680f2b1402b0823</citedby><cites>FETCH-LOGICAL-c373t-437a0f62418136d874e8a64f5df052bfb7fb81a459779cf177680f2b1402b0823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Rahimkhani, P.</creatorcontrib><creatorcontrib>Ordokhani, Y.</creatorcontrib><creatorcontrib>Babolian, E.</creatorcontrib><title>Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet</title><title>Journal of computational and applied mathematics</title><description>In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivative we will use Caputo sense by using Riemann–Liouville fractional integral operator. First, the generalized fractional-order Bernoulli wavelets are constructed. Then, these functions and their properties are employed to derive the GFBWFs operational matrices of fractional integration and pantograph. The operational matrices of integral and pantograph are utilized to reduce the problem to a set of algebraic equations. Finally, some examples are included for demonstrating the validity and applicability of our method.</description><subject>Caputo derivative</subject><subject>Collocation method</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Fractional pantograph differential equations</subject><subject>Generalized fractional-order Bernoulli wavelet</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical solution</subject><subject>Operational matrix</subject><subject>Operators (mathematics)</subject><subject>Pantographs</subject><subject>Wavelet</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLg-vEDvOXopetLmzYpnlT8AtGLnkOavqxZss2atMr6682yHjwJA-8xzAzMEHLGYM6ANRfLudGreZnfOWRAvUdmTIq2YELIfTKDSogCeCkOyVFKSwBoWsZn5Pt5WmF0Rnuagp9GFwYaLLVRm-2f6bUexrCIev1Oe2ctRhxGl3n8mPRWkmi3oVNyw4IucMCovfvG_k9CEWKPkV5jHMLkvaNf-hM9jifkwGqf8PT3HpO3u9vXm4fi6eX-8ebqqTCVqMaCV0KDbUrOJKuaXgqOUjfc1r2FuuxsJ2wnmeZ1K0RrbO7bSLBlxziUHciyOibnu9x1DB8TplGtXDLovR4wTEkxWdV1WzNeZSnbSU0MKUW0ah3dSseNYqC2O6ulyjur7c4KMqDOnsudB3OHT4dRJeNwMNi7iGZUfXD_uH8AfvWIQg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Rahimkhani, P.</creator><creator>Ordokhani, Y.</creator><creator>Babolian, E.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet</title><author>Rahimkhani, P. ; Ordokhani, Y. ; Babolian, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-437a0f62418136d874e8a64f5df052bfb7fb81a459779cf177680f2b1402b0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Caputo derivative</topic><topic>Collocation method</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Fractional pantograph differential equations</topic><topic>Generalized fractional-order Bernoulli wavelet</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical solution</topic><topic>Operational matrix</topic><topic>Operators (mathematics)</topic><topic>Pantographs</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimkhani, P.</creatorcontrib><creatorcontrib>Ordokhani, Y.</creatorcontrib><creatorcontrib>Babolian, E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimkhani, P.</au><au>Ordokhani, Y.</au><au>Babolian, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>309</volume><spage>493</spage><epage>510</epage><pages>493-510</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivative we will use Caputo sense by using Riemann–Liouville fractional integral operator. First, the generalized fractional-order Bernoulli wavelets are constructed. Then, these functions and their properties are employed to derive the GFBWFs operational matrices of fractional integration and pantograph. The operational matrices of integral and pantograph are utilized to reduce the problem to a set of algebraic equations. Finally, some examples are included for demonstrating the validity and applicability of our method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.06.005</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2017-01, Vol.309, p.493-510 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835595143 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Caputo derivative Collocation method Derivatives Differential equations Fractional pantograph differential equations Generalized fractional-order Bernoulli wavelet Integrals Mathematical analysis Mathematical models Numerical solution Operational matrix Operators (mathematics) Pantographs Wavelet |
title | Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20fractional%20pantograph%20differential%20equations%20by%20using%20generalized%20fractional-order%20Bernoulli%20wavelet&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Rahimkhani,%20P.&rft.date=2017-01-01&rft.volume=309&rft.spage=493&rft.epage=510&rft.pages=493-510&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.06.005&rft_dat=%3Cproquest_cross%3E1835595143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835595143&rft_id=info:pmid/&rft_els_id=S0377042716302758&rfr_iscdi=true |