Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet

In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-01, Vol.309, p.493-510
Hauptverfasser: Rahimkhani, P., Ordokhani, Y., Babolian, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue
container_start_page 493
container_title Journal of computational and applied mathematics
container_volume 309
creator Rahimkhani, P.
Ordokhani, Y.
Babolian, E.
description In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivative we will use Caputo sense by using Riemann–Liouville fractional integral operator. First, the generalized fractional-order Bernoulli wavelets are constructed. Then, these functions and their properties are employed to derive the GFBWFs operational matrices of fractional integration and pantograph. The operational matrices of integral and pantograph are utilized to reduce the problem to a set of algebraic equations. Finally, some examples are included for demonstrating the validity and applicability of our method.
doi_str_mv 10.1016/j.cam.2016.06.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835595143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716302758</els_id><sourcerecordid>1835595143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-437a0f62418136d874e8a64f5df052bfb7fb81a459779cf177680f2b1402b0823</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLg-vEDvOXopetLmzYpnlT8AtGLnkOavqxZss2atMr6682yHjwJA-8xzAzMEHLGYM6ANRfLudGreZnfOWRAvUdmTIq2YELIfTKDSogCeCkOyVFKSwBoWsZn5Pt5WmF0Rnuagp9GFwYaLLVRm-2f6bUexrCIev1Oe2ctRhxGl3n8mPRWkmi3oVNyw4IucMCovfvG_k9CEWKPkV5jHMLkvaNf-hM9jifkwGqf8PT3HpO3u9vXm4fi6eX-8ebqqTCVqMaCV0KDbUrOJKuaXgqOUjfc1r2FuuxsJ2wnmeZ1K0RrbO7bSLBlxziUHciyOibnu9x1DB8TplGtXDLovR4wTEkxWdV1WzNeZSnbSU0MKUW0ah3dSseNYqC2O6ulyjur7c4KMqDOnsudB3OHT4dRJeNwMNi7iGZUfXD_uH8AfvWIQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835595143</pqid></control><display><type>article</type><title>Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Rahimkhani, P. ; Ordokhani, Y. ; Babolian, E.</creator><creatorcontrib>Rahimkhani, P. ; Ordokhani, Y. ; Babolian, E.</creatorcontrib><description>In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivative we will use Caputo sense by using Riemann–Liouville fractional integral operator. First, the generalized fractional-order Bernoulli wavelets are constructed. Then, these functions and their properties are employed to derive the GFBWFs operational matrices of fractional integration and pantograph. The operational matrices of integral and pantograph are utilized to reduce the problem to a set of algebraic equations. Finally, some examples are included for demonstrating the validity and applicability of our method.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.06.005</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Caputo derivative ; Collocation method ; Derivatives ; Differential equations ; Fractional pantograph differential equations ; Generalized fractional-order Bernoulli wavelet ; Integrals ; Mathematical analysis ; Mathematical models ; Numerical solution ; Operational matrix ; Operators (mathematics) ; Pantographs ; Wavelet</subject><ispartof>Journal of computational and applied mathematics, 2017-01, Vol.309, p.493-510</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-437a0f62418136d874e8a64f5df052bfb7fb81a459779cf177680f2b1402b0823</citedby><cites>FETCH-LOGICAL-c373t-437a0f62418136d874e8a64f5df052bfb7fb81a459779cf177680f2b1402b0823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Rahimkhani, P.</creatorcontrib><creatorcontrib>Ordokhani, Y.</creatorcontrib><creatorcontrib>Babolian, E.</creatorcontrib><title>Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet</title><title>Journal of computational and applied mathematics</title><description>In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivative we will use Caputo sense by using Riemann–Liouville fractional integral operator. First, the generalized fractional-order Bernoulli wavelets are constructed. Then, these functions and their properties are employed to derive the GFBWFs operational matrices of fractional integration and pantograph. The operational matrices of integral and pantograph are utilized to reduce the problem to a set of algebraic equations. Finally, some examples are included for demonstrating the validity and applicability of our method.</description><subject>Caputo derivative</subject><subject>Collocation method</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Fractional pantograph differential equations</subject><subject>Generalized fractional-order Bernoulli wavelet</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical solution</subject><subject>Operational matrix</subject><subject>Operators (mathematics)</subject><subject>Pantographs</subject><subject>Wavelet</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLg-vEDvOXopetLmzYpnlT8AtGLnkOavqxZss2atMr6682yHjwJA-8xzAzMEHLGYM6ANRfLudGreZnfOWRAvUdmTIq2YELIfTKDSogCeCkOyVFKSwBoWsZn5Pt5WmF0Rnuagp9GFwYaLLVRm-2f6bUexrCIev1Oe2ctRhxGl3n8mPRWkmi3oVNyw4IucMCovfvG_k9CEWKPkV5jHMLkvaNf-hM9jifkwGqf8PT3HpO3u9vXm4fi6eX-8ebqqTCVqMaCV0KDbUrOJKuaXgqOUjfc1r2FuuxsJ2wnmeZ1K0RrbO7bSLBlxziUHciyOibnu9x1DB8TplGtXDLovR4wTEkxWdV1WzNeZSnbSU0MKUW0ah3dSseNYqC2O6ulyjur7c4KMqDOnsudB3OHT4dRJeNwMNi7iGZUfXD_uH8AfvWIQg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Rahimkhani, P.</creator><creator>Ordokhani, Y.</creator><creator>Babolian, E.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet</title><author>Rahimkhani, P. ; Ordokhani, Y. ; Babolian, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-437a0f62418136d874e8a64f5df052bfb7fb81a459779cf177680f2b1402b0823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Caputo derivative</topic><topic>Collocation method</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Fractional pantograph differential equations</topic><topic>Generalized fractional-order Bernoulli wavelet</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical solution</topic><topic>Operational matrix</topic><topic>Operators (mathematics)</topic><topic>Pantographs</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimkhani, P.</creatorcontrib><creatorcontrib>Ordokhani, Y.</creatorcontrib><creatorcontrib>Babolian, E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimkhani, P.</au><au>Ordokhani, Y.</au><au>Babolian, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>309</volume><spage>493</spage><epage>510</epage><pages>493-510</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In the current study, new functions called generalized fractional-order Bernoulli wavelet functions (GFBWFs) based on the Bernoulli wavelets are defined to obtain the numerical solution of fractional-order pantograph differential equations in a large interval. For the concept of fractional derivative we will use Caputo sense by using Riemann–Liouville fractional integral operator. First, the generalized fractional-order Bernoulli wavelets are constructed. Then, these functions and their properties are employed to derive the GFBWFs operational matrices of fractional integration and pantograph. The operational matrices of integral and pantograph are utilized to reduce the problem to a set of algebraic equations. Finally, some examples are included for demonstrating the validity and applicability of our method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.06.005</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2017-01, Vol.309, p.493-510
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1835595143
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Caputo derivative
Collocation method
Derivatives
Differential equations
Fractional pantograph differential equations
Generalized fractional-order Bernoulli wavelet
Integrals
Mathematical analysis
Mathematical models
Numerical solution
Operational matrix
Operators (mathematics)
Pantographs
Wavelet
title Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T08%3A04%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20fractional%20pantograph%20differential%20equations%20by%20using%20generalized%20fractional-order%20Bernoulli%20wavelet&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Rahimkhani,%20P.&rft.date=2017-01-01&rft.volume=309&rft.spage=493&rft.epage=510&rft.pages=493-510&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.06.005&rft_dat=%3Cproquest_cross%3E1835595143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835595143&rft_id=info:pmid/&rft_els_id=S0377042716302758&rfr_iscdi=true