Free Convection Flow and Heat Transfer of Tangent Hyperbolic past a Vertical Porous Plate with Partial Slip
This article presents the nonlinear free convection boundary layer flow and heat transfer of an incompressible Tangent Hyperbolic non-Newtonian fluid from a vertical porous plate with velocity slip and thermal jump effects. The transformed conservation equations are solved numerically subject to phy...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Fluid Mechanics 2016-01, Vol.9 (4), p.1667-1678 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1678 |
---|---|
container_issue | 4 |
container_start_page | 1667 |
container_title | Journal of Applied Fluid Mechanics |
container_volume | 9 |
creator | Prasad, V Ramachandra Gaffar, Shaik Beg, O Anwar |
description | This article presents the nonlinear free convection boundary layer flow and heat transfer of an incompressible Tangent Hyperbolic non-Newtonian fluid from a vertical porous plate with velocity slip and thermal jump effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We), the power law index (n), Velocity slip (Sf), Thermal jump (ST), Prandtl number (Pr) and dimensionless tangential coordinate (x) on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, skin friction and heat transfer rate (Nusselt number) is increased with increasing Weissenberg number (We), whereas the temperature is decreased. Increasing power law index (n) enhances velocity and heat transfer rate but decreases temperature and skin friction. An increase in Thermal jump (ST) is observed to decrease velocity, temperature, local skin friction and Nusselt number. Increasing Velocity slip (Sf) is observed to increase velocity and heat transfer rate but decreases temperature and local skin friction. An increasing Prandtl number, (Pr), is found to decrease both velocity and temperature. The study is relevant to chemical materials processing applications. |
doi_str_mv | 10.18869/acadpub.jafm.68.235.24718 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835592906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_46f105717edb4bbb9357399bfa27434a</doaj_id><sourcerecordid>1835592906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-f3f0c6844bf4197d54c9f9e6bb15df6579287c3e36181cf2466ae2ca3c1f0b0b3</originalsourceid><addsrcrecordid>eNqNkk9vEzEQxVcIJKq238EqFy5Z1uv_3FBESKVKjdTQqzX2jsuGzXqxN1T99rhJ4cCpJ488T08zb35VdUWbmmotzSfw0E0HV-8g7Gup65aJuuWK6jfVGVVMLJjk4u3fWqj2fXWZc-8azhVnTJmz6ucqIZJlHH-jn_s4ktUQHwmMHVkjzGSbYMwBE4mBbGF8wHEm66cJk4tD78kEeSZA7jHNvYeBbGKKh0w2A8xIHvv5B9lAaZXO3dBPF9W7AEPGy5f3vPq--rpdrhc3t9-ul19uFp4rMS8CC42XmnMXODWqE9ybYFA6R0UXpFCm1cozZJJq6kPLpQRsPTBPQ-Max86r65NvF2Fnp9TvIT3ZCL09fsT0YJ-n8gNaLgNthKIKO8edc6akxIxxAdqSEIfi9fHkNaX464B5tvs-exwGGLGsaqlmQpjWNPIVUmooL_60SD_8J93FQxpLKLbcT7VKUaOL6vNJ5VPMOWH4twtt7JEA-0KAfSbASm0LAfZIAPsDpACm2Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2477277198</pqid></control><display><type>article</type><title>Free Convection Flow and Heat Transfer of Tangent Hyperbolic past a Vertical Porous Plate with Partial Slip</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Prasad, V Ramachandra ; Gaffar, Shaik ; Beg, O Anwar</creator><creatorcontrib>Prasad, V Ramachandra ; Gaffar, Shaik ; Beg, O Anwar ; Madanapalle Institute of Science and Technology ; Sheaf Building, Sheffield Hallam University Sheffield, South Yorkshire, S 1 1 WB, U.K ; Salalah College of Technology</creatorcontrib><description>This article presents the nonlinear free convection boundary layer flow and heat transfer of an incompressible Tangent Hyperbolic non-Newtonian fluid from a vertical porous plate with velocity slip and thermal jump effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We), the power law index (n), Velocity slip (Sf), Thermal jump (ST), Prandtl number (Pr) and dimensionless tangential coordinate (x) on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, skin friction and heat transfer rate (Nusselt number) is increased with increasing Weissenberg number (We), whereas the temperature is decreased. Increasing power law index (n) enhances velocity and heat transfer rate but decreases temperature and skin friction. An increase in Thermal jump (ST) is observed to decrease velocity, temperature, local skin friction and Nusselt number. Increasing Velocity slip (Sf) is observed to increase velocity and heat transfer rate but decreases temperature and local skin friction. An increasing Prandtl number, (Pr), is found to decrease both velocity and temperature. The study is relevant to chemical materials processing applications.</description><identifier>ISSN: 1735-3572</identifier><identifier>EISSN: 1735-3645</identifier><identifier>DOI: 10.18869/acadpub.jafm.68.235.24718</identifier><language>eng</language><publisher>Isfahan: Isfahan University of Technology</publisher><subject>Boundary conditions ; Boundary layer flow ; Boundary layers ; Computational fluid dynamics ; Conservation equations ; Convection ; Correlation analysis ; Dimensionless numbers ; Finite difference method ; Fluid flow ; Free convection ; Friction ; Heat transfer ; Incompressible flow ; Materials processing ; Mathematical models ; Newtonian fluids ; Non Newtonian fluids ; Non-newtonian tangent hyperbolic fluid; Boundary layer flow; Weissenberg number; Power law index; Velocity slip; Thermal jump; Skin friction; Nusselt number ; Nusselt number ; Parameters ; Porous plates ; Power law ; Prandtl number ; Skin ; Skin friction ; Slip ; Temperature ; Velocity</subject><ispartof>Journal of Applied Fluid Mechanics, 2016-01, Vol.9 (4), p.1667-1678</ispartof><rights>2016. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-f3f0c6844bf4197d54c9f9e6bb15df6579287c3e36181cf2466ae2ca3c1f0b0b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Prasad, V Ramachandra</creatorcontrib><creatorcontrib>Gaffar, Shaik</creatorcontrib><creatorcontrib>Beg, O Anwar</creatorcontrib><creatorcontrib>Madanapalle Institute of Science and Technology</creatorcontrib><creatorcontrib>Sheaf Building, Sheffield Hallam University Sheffield, South Yorkshire, S 1 1 WB, U.K</creatorcontrib><creatorcontrib>Salalah College of Technology</creatorcontrib><title>Free Convection Flow and Heat Transfer of Tangent Hyperbolic past a Vertical Porous Plate with Partial Slip</title><title>Journal of Applied Fluid Mechanics</title><description>This article presents the nonlinear free convection boundary layer flow and heat transfer of an incompressible Tangent Hyperbolic non-Newtonian fluid from a vertical porous plate with velocity slip and thermal jump effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We), the power law index (n), Velocity slip (Sf), Thermal jump (ST), Prandtl number (Pr) and dimensionless tangential coordinate (x) on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, skin friction and heat transfer rate (Nusselt number) is increased with increasing Weissenberg number (We), whereas the temperature is decreased. Increasing power law index (n) enhances velocity and heat transfer rate but decreases temperature and skin friction. An increase in Thermal jump (ST) is observed to decrease velocity, temperature, local skin friction and Nusselt number. Increasing Velocity slip (Sf) is observed to increase velocity and heat transfer rate but decreases temperature and local skin friction. An increasing Prandtl number, (Pr), is found to decrease both velocity and temperature. The study is relevant to chemical materials processing applications.</description><subject>Boundary conditions</subject><subject>Boundary layer flow</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Conservation equations</subject><subject>Convection</subject><subject>Correlation analysis</subject><subject>Dimensionless numbers</subject><subject>Finite difference method</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Friction</subject><subject>Heat transfer</subject><subject>Incompressible flow</subject><subject>Materials processing</subject><subject>Mathematical models</subject><subject>Newtonian fluids</subject><subject>Non Newtonian fluids</subject><subject>Non-newtonian tangent hyperbolic fluid; Boundary layer flow; Weissenberg number; Power law index; Velocity slip; Thermal jump; Skin friction; Nusselt number</subject><subject>Nusselt number</subject><subject>Parameters</subject><subject>Porous plates</subject><subject>Power law</subject><subject>Prandtl number</subject><subject>Skin</subject><subject>Skin friction</subject><subject>Slip</subject><subject>Temperature</subject><subject>Velocity</subject><issn>1735-3572</issn><issn>1735-3645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk9vEzEQxVcIJKq238EqFy5Z1uv_3FBESKVKjdTQqzX2jsuGzXqxN1T99rhJ4cCpJ488T08zb35VdUWbmmotzSfw0E0HV-8g7Gup65aJuuWK6jfVGVVMLJjk4u3fWqj2fXWZc-8azhVnTJmz6ucqIZJlHH-jn_s4ktUQHwmMHVkjzGSbYMwBE4mBbGF8wHEm66cJk4tD78kEeSZA7jHNvYeBbGKKh0w2A8xIHvv5B9lAaZXO3dBPF9W7AEPGy5f3vPq--rpdrhc3t9-ul19uFp4rMS8CC42XmnMXODWqE9ybYFA6R0UXpFCm1cozZJJq6kPLpQRsPTBPQ-Max86r65NvF2Fnp9TvIT3ZCL09fsT0YJ-n8gNaLgNthKIKO8edc6akxIxxAdqSEIfi9fHkNaX464B5tvs-exwGGLGsaqlmQpjWNPIVUmooL_60SD_8J93FQxpLKLbcT7VKUaOL6vNJ5VPMOWH4twtt7JEA-0KAfSbASm0LAfZIAPsDpACm2Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Prasad, V Ramachandra</creator><creator>Gaffar, Shaik</creator><creator>Beg, O Anwar</creator><general>Isfahan University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>DOA</scope></search><sort><creationdate>20160101</creationdate><title>Free Convection Flow and Heat Transfer of Tangent Hyperbolic past a Vertical Porous Plate with Partial Slip</title><author>Prasad, V Ramachandra ; Gaffar, Shaik ; Beg, O Anwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-f3f0c6844bf4197d54c9f9e6bb15df6579287c3e36181cf2466ae2ca3c1f0b0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary conditions</topic><topic>Boundary layer flow</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Conservation equations</topic><topic>Convection</topic><topic>Correlation analysis</topic><topic>Dimensionless numbers</topic><topic>Finite difference method</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Friction</topic><topic>Heat transfer</topic><topic>Incompressible flow</topic><topic>Materials processing</topic><topic>Mathematical models</topic><topic>Newtonian fluids</topic><topic>Non Newtonian fluids</topic><topic>Non-newtonian tangent hyperbolic fluid; Boundary layer flow; Weissenberg number; Power law index; Velocity slip; Thermal jump; Skin friction; Nusselt number</topic><topic>Nusselt number</topic><topic>Parameters</topic><topic>Porous plates</topic><topic>Power law</topic><topic>Prandtl number</topic><topic>Skin</topic><topic>Skin friction</topic><topic>Slip</topic><topic>Temperature</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, V Ramachandra</creatorcontrib><creatorcontrib>Gaffar, Shaik</creatorcontrib><creatorcontrib>Beg, O Anwar</creatorcontrib><creatorcontrib>Madanapalle Institute of Science and Technology</creatorcontrib><creatorcontrib>Sheaf Building, Sheffield Hallam University Sheffield, South Yorkshire, S 1 1 WB, U.K</creatorcontrib><creatorcontrib>Salalah College of Technology</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Applied Fluid Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, V Ramachandra</au><au>Gaffar, Shaik</au><au>Beg, O Anwar</au><aucorp>Madanapalle Institute of Science and Technology</aucorp><aucorp>Sheaf Building, Sheffield Hallam University Sheffield, South Yorkshire, S 1 1 WB, U.K</aucorp><aucorp>Salalah College of Technology</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free Convection Flow and Heat Transfer of Tangent Hyperbolic past a Vertical Porous Plate with Partial Slip</atitle><jtitle>Journal of Applied Fluid Mechanics</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>9</volume><issue>4</issue><spage>1667</spage><epage>1678</epage><pages>1667-1678</pages><issn>1735-3572</issn><eissn>1735-3645</eissn><abstract>This article presents the nonlinear free convection boundary layer flow and heat transfer of an incompressible Tangent Hyperbolic non-Newtonian fluid from a vertical porous plate with velocity slip and thermal jump effects. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We), the power law index (n), Velocity slip (Sf), Thermal jump (ST), Prandtl number (Pr) and dimensionless tangential coordinate (x) on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, skin friction and heat transfer rate (Nusselt number) is increased with increasing Weissenberg number (We), whereas the temperature is decreased. Increasing power law index (n) enhances velocity and heat transfer rate but decreases temperature and skin friction. An increase in Thermal jump (ST) is observed to decrease velocity, temperature, local skin friction and Nusselt number. Increasing Velocity slip (Sf) is observed to increase velocity and heat transfer rate but decreases temperature and local skin friction. An increasing Prandtl number, (Pr), is found to decrease both velocity and temperature. The study is relevant to chemical materials processing applications.</abstract><cop>Isfahan</cop><pub>Isfahan University of Technology</pub><doi>10.18869/acadpub.jafm.68.235.24718</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-3572 |
ispartof | Journal of Applied Fluid Mechanics, 2016-01, Vol.9 (4), p.1667-1678 |
issn | 1735-3572 1735-3645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835592906 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Boundary conditions Boundary layer flow Boundary layers Computational fluid dynamics Conservation equations Convection Correlation analysis Dimensionless numbers Finite difference method Fluid flow Free convection Friction Heat transfer Incompressible flow Materials processing Mathematical models Newtonian fluids Non Newtonian fluids Non-newtonian tangent hyperbolic fluid Boundary layer flow Weissenberg number Power law index Velocity slip Thermal jump Skin friction Nusselt number Nusselt number Parameters Porous plates Power law Prandtl number Skin Skin friction Slip Temperature Velocity |
title | Free Convection Flow and Heat Transfer of Tangent Hyperbolic past a Vertical Porous Plate with Partial Slip |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20Convection%20Flow%20and%20Heat%20Transfer%20of%20Tangent%20Hyperbolic%20past%20a%20Vertical%20Porous%20Plate%20with%20Partial%20Slip&rft.jtitle=Journal%20of%20Applied%20Fluid%20Mechanics&rft.au=Prasad,%20V%20Ramachandra&rft.aucorp=Madanapalle%20Institute%20of%20Science%20and%20Technology&rft.date=2016-01-01&rft.volume=9&rft.issue=4&rft.spage=1667&rft.epage=1678&rft.pages=1667-1678&rft.issn=1735-3572&rft.eissn=1735-3645&rft_id=info:doi/10.18869/acadpub.jafm.68.235.24718&rft_dat=%3Cproquest_doaj_%3E1835592906%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2477277198&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_46f105717edb4bbb9357399bfa27434a&rfr_iscdi=true |