On Self-Centeredness of Product of Graphs

A graph G is said to be a self-centered graph if the eccentricity of every vertex of the graph is the same. In other words, a graph is a self-centered graph if radius and diameter of the graph are equal. In this paper, self-centeredness of strong product, co-normal product, and lexicographic product...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of combinatorics 2016-01, Vol.2016, p.1-4
Hauptverfasser: Singh, Priyanka, Panigrahi, Pratima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title International journal of combinatorics
container_volume 2016
creator Singh, Priyanka
Panigrahi, Pratima
description A graph G is said to be a self-centered graph if the eccentricity of every vertex of the graph is the same. In other words, a graph is a self-centered graph if radius and diameter of the graph are equal. In this paper, self-centeredness of strong product, co-normal product, and lexicographic product of graphs is studied in detail. The necessary and sufficient conditions for these products of graphs to be a self-centered graph are also discussed. The distance between any two vertices in the co-normal product of a finite number of graphs is also computed analytically.
doi_str_mv 10.1155/2016/2508156
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835584877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4154246781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2396-671a891dbf3eaea1b2c3e0f902b30875d8a575dd0b8a32b2dbac0f7b457e0f2f3</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCpbamw9Q8KLo2kyy2WSPsmgVChXUc0g2E7plu1uTLuLbm9LiwYNzmJnDxzD8hFwCvQcQYsYoFDMmqAJRnJARFEpmJUg4_d0Lfk4mMa5pKkUBmByRm2U3fcPWZxV2OwzoOoxx2vvpa-jdUO_26zyY7SpekDNv2oiT4xyTj6fH9-o5WyznL9XDIqsZL4uskGBUCc56jgYNWFZzpL6kzHKqpHDKiNQdtcpwZpmzpqZe2lzIxJjnY3J9uLsN_eeAcac3TayxbU2H_RA1KC6EypWUiV79oet-CF36LilgKue0zJO6O6g69DEG9Hobmo0J3xqo3ken99HpY3SJ3x74qumc-Wr-1z82s2rG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812843094</pqid></control><display><type>article</type><title>On Self-Centeredness of Product of Graphs</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Singh, Priyanka ; Panigrahi, Pratima</creator><contributor>Szekely, Laszlo A.</contributor><creatorcontrib>Singh, Priyanka ; Panigrahi, Pratima ; Szekely, Laszlo A.</creatorcontrib><description>A graph G is said to be a self-centered graph if the eccentricity of every vertex of the graph is the same. In other words, a graph is a self-centered graph if radius and diameter of the graph are equal. In this paper, self-centeredness of strong product, co-normal product, and lexicographic product of graphs is studied in detail. The necessary and sufficient conditions for these products of graphs to be a self-centered graph are also discussed. The distance between any two vertices in the co-normal product of a finite number of graphs is also computed analytically.</description><identifier>ISSN: 1687-9163</identifier><identifier>EISSN: 1687-9171</identifier><identifier>DOI: 10.1155/2016/2508156</identifier><language>eng</language><publisher>New York: Hindawi Publishing Corporation</publisher><subject>Combinatorial analysis ; Computation ; Eccentricity ; Graphs ; Mathematical analysis</subject><ispartof>International journal of combinatorics, 2016-01, Vol.2016, p.1-4</ispartof><rights>Copyright © 2016 Priyanka Singh and Pratima Panigrahi.</rights><rights>Copyright © 2016 Priyanka Singh and Pratima Panigrahi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2396-671a891dbf3eaea1b2c3e0f902b30875d8a575dd0b8a32b2dbac0f7b457e0f2f3</cites><orcidid>0000-0003-0293-6649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Szekely, Laszlo A.</contributor><creatorcontrib>Singh, Priyanka</creatorcontrib><creatorcontrib>Panigrahi, Pratima</creatorcontrib><title>On Self-Centeredness of Product of Graphs</title><title>International journal of combinatorics</title><description>A graph G is said to be a self-centered graph if the eccentricity of every vertex of the graph is the same. In other words, a graph is a self-centered graph if radius and diameter of the graph are equal. In this paper, self-centeredness of strong product, co-normal product, and lexicographic product of graphs is studied in detail. The necessary and sufficient conditions for these products of graphs to be a self-centered graph are also discussed. The distance between any two vertices in the co-normal product of a finite number of graphs is also computed analytically.</description><subject>Combinatorial analysis</subject><subject>Computation</subject><subject>Eccentricity</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><issn>1687-9163</issn><issn>1687-9171</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90MFKAzEQBuAgCpbamw9Q8KLo2kyy2WSPsmgVChXUc0g2E7plu1uTLuLbm9LiwYNzmJnDxzD8hFwCvQcQYsYoFDMmqAJRnJARFEpmJUg4_d0Lfk4mMa5pKkUBmByRm2U3fcPWZxV2OwzoOoxx2vvpa-jdUO_26zyY7SpekDNv2oiT4xyTj6fH9-o5WyznL9XDIqsZL4uskGBUCc56jgYNWFZzpL6kzHKqpHDKiNQdtcpwZpmzpqZe2lzIxJjnY3J9uLsN_eeAcac3TayxbU2H_RA1KC6EypWUiV79oet-CF36LilgKue0zJO6O6g69DEG9Hobmo0J3xqo3ken99HpY3SJ3x74qumc-Wr-1z82s2rG</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Singh, Priyanka</creator><creator>Panigrahi, Pratima</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0293-6649</orcidid></search><sort><creationdate>20160101</creationdate><title>On Self-Centeredness of Product of Graphs</title><author>Singh, Priyanka ; Panigrahi, Pratima</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2396-671a891dbf3eaea1b2c3e0f902b30875d8a575dd0b8a32b2dbac0f7b457e0f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Combinatorial analysis</topic><topic>Computation</topic><topic>Eccentricity</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Priyanka</creatorcontrib><creatorcontrib>Panigrahi, Pratima</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Priyanka</au><au>Panigrahi, Pratima</au><au>Szekely, Laszlo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Self-Centeredness of Product of Graphs</atitle><jtitle>International journal of combinatorics</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1687-9163</issn><eissn>1687-9171</eissn><abstract>A graph G is said to be a self-centered graph if the eccentricity of every vertex of the graph is the same. In other words, a graph is a self-centered graph if radius and diameter of the graph are equal. In this paper, self-centeredness of strong product, co-normal product, and lexicographic product of graphs is studied in detail. The necessary and sufficient conditions for these products of graphs to be a self-centered graph are also discussed. The distance between any two vertices in the co-normal product of a finite number of graphs is also computed analytically.</abstract><cop>New York</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/2508156</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-0293-6649</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9163
ispartof International journal of combinatorics, 2016-01, Vol.2016, p.1-4
issn 1687-9163
1687-9171
language eng
recordid cdi_proquest_miscellaneous_1835584877
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Combinatorial analysis
Computation
Eccentricity
Graphs
Mathematical analysis
title On Self-Centeredness of Product of Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Self-Centeredness%20of%20Product%20of%20Graphs&rft.jtitle=International%20journal%20of%20combinatorics&rft.au=Singh,%20Priyanka&rft.date=2016-01-01&rft.volume=2016&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1687-9163&rft.eissn=1687-9171&rft_id=info:doi/10.1155/2016/2508156&rft_dat=%3Cproquest_cross%3E4154246781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812843094&rft_id=info:pmid/&rfr_iscdi=true