LIBSVX: A Supervoxel Library and Benchmark for Early Video Processing

Supervoxel segmentation has strong potential to be incorporated into early video analysis as superpixel segmentation has in image analysis. However, there are many plausible supervoxel methods and little understanding as to when and where each is most appropriate. Indeed, we are not aware of a singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2016-09, Vol.119 (3), p.272-290
Hauptverfasser: Xu, Chenliang, Corso, Jason J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue 3
container_start_page 272
container_title International journal of computer vision
container_volume 119
creator Xu, Chenliang
Corso, Jason J.
description Supervoxel segmentation has strong potential to be incorporated into early video analysis as superpixel segmentation has in image analysis. However, there are many plausible supervoxel methods and little understanding as to when and where each is most appropriate. Indeed, we are not aware of a single comparative study on supervoxel segmentation. To that end, we study seven supervoxel algorithms, including both off-line and streaming methods, in the context of what we consider to be a good supervoxel: namely, spatiotemporal uniformity, object/region boundary detection, region compression and parsimony. For the evaluation we propose a comprehensive suite of seven quality metrics to measure these desirable supervoxel characteristics. In addition, we evaluate the methods in a supervoxel classification task as a proxy for subsequent high-level uses of the supervoxels in video analysis. We use six existing benchmark video datasets with a variety of content-types and dense human annotations. Our findings have led us to conclusive evidence that the hierarchical graph-based (GBH), segmentation by weighted aggregation (SWA) and temporal superpixels (TSP) methods are the top-performers among the seven methods. They all perform well in terms of segmentation accuracy, but vary in regard to the other desiderata: GBH captures object boundaries best; SWA has the best potential for region compression; and TSP achieves the best undersegmentation error.
doi_str_mv 10.1007/s11263-016-0906-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835583057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470493707</galeid><sourcerecordid>A470493707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-3c5629a89a3406431320380da95e276f4aec44d7f9a44d45f09cc1e96be2fc253</originalsourceid><addsrcrecordid>eNp1kU2P0zAQhi0EEqXwA7hZ4gKHLOPPxNy6qwKVKoEorLhZXmdcsqRx107Q9t_jKhxYJDSHkUbPO18vIS8ZXDCA-m1mjGtRAdMVGNCVekQWTNWiYhLUY7IAw6FS2rCn5FnOtwDAGy4WZL3dXO6uv7-jK7qbjph-xXvs6ba7SS6dqBtaeomD_3Fw6ScNMdG1S_2JXnctRvo5RY85d8P-OXkSXJ_xxZ-8JN_er79efay2nz5srlbbykvOx0p4pblxjXFCgpaCCQ6igdYZhbzWQTr0UrZ1MK4kqQIY7xkafYM8eK7Ekrye-x5TvJswj_bQZY997waMU7asEUo1AsrhS_LqH_Q2Tmko21lmVA1lfqMLdTFTe9ej7YYQx-R8iRYPnY8Dhq7UV7IGaUQN57ZvHggKM-L9uHdTznaz-_KQZTPrU8w5YbDH1JVPniwDe3bNzq7Z4po9u2bPF_JZkws77DH9tfZ_Rb8B4t6VxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957006486</pqid></control><display><type>article</type><title>LIBSVX: A Supervoxel Library and Benchmark for Early Video Processing</title><source>Springer Nature - Complete Springer Journals</source><creator>Xu, Chenliang ; Corso, Jason J.</creator><creatorcontrib>Xu, Chenliang ; Corso, Jason J.</creatorcontrib><description>Supervoxel segmentation has strong potential to be incorporated into early video analysis as superpixel segmentation has in image analysis. However, there are many plausible supervoxel methods and little understanding as to when and where each is most appropriate. Indeed, we are not aware of a single comparative study on supervoxel segmentation. To that end, we study seven supervoxel algorithms, including both off-line and streaming methods, in the context of what we consider to be a good supervoxel: namely, spatiotemporal uniformity, object/region boundary detection, region compression and parsimony. For the evaluation we propose a comprehensive suite of seven quality metrics to measure these desirable supervoxel characteristics. In addition, we evaluate the methods in a supervoxel classification task as a proxy for subsequent high-level uses of the supervoxels in video analysis. We use six existing benchmark video datasets with a variety of content-types and dense human annotations. Our findings have led us to conclusive evidence that the hierarchical graph-based (GBH), segmentation by weighted aggregation (SWA) and temporal superpixels (TSP) methods are the top-performers among the seven methods. They all perform well in terms of segmentation accuracy, but vary in regard to the other desiderata: GBH captures object boundaries best; SWA has the best potential for region compression; and TSP achieves the best undersegmentation error.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-016-0906-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agglomeration ; Algorithms ; Annotations ; Artificial Intelligence ; Benchmarking ; Benchmarks ; Boundaries ; Compressing ; Compression tests ; Computer Imaging ; Computer Science ; Image analysis ; Image processing ; Image Processing and Computer Vision ; Image segmentation ; Libraries ; Pattern Recognition ; Pattern Recognition and Graphics ; Segmentation ; Video ; Vision</subject><ispartof>International journal of computer vision, 2016-09, Vol.119 (3), p.272-290</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>International Journal of Computer Vision is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-3c5629a89a3406431320380da95e276f4aec44d7f9a44d45f09cc1e96be2fc253</citedby><cites>FETCH-LOGICAL-c422t-3c5629a89a3406431320380da95e276f4aec44d7f9a44d45f09cc1e96be2fc253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-016-0906-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-016-0906-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Xu, Chenliang</creatorcontrib><creatorcontrib>Corso, Jason J.</creatorcontrib><title>LIBSVX: A Supervoxel Library and Benchmark for Early Video Processing</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>Supervoxel segmentation has strong potential to be incorporated into early video analysis as superpixel segmentation has in image analysis. However, there are many plausible supervoxel methods and little understanding as to when and where each is most appropriate. Indeed, we are not aware of a single comparative study on supervoxel segmentation. To that end, we study seven supervoxel algorithms, including both off-line and streaming methods, in the context of what we consider to be a good supervoxel: namely, spatiotemporal uniformity, object/region boundary detection, region compression and parsimony. For the evaluation we propose a comprehensive suite of seven quality metrics to measure these desirable supervoxel characteristics. In addition, we evaluate the methods in a supervoxel classification task as a proxy for subsequent high-level uses of the supervoxels in video analysis. We use six existing benchmark video datasets with a variety of content-types and dense human annotations. Our findings have led us to conclusive evidence that the hierarchical graph-based (GBH), segmentation by weighted aggregation (SWA) and temporal superpixels (TSP) methods are the top-performers among the seven methods. They all perform well in terms of segmentation accuracy, but vary in regard to the other desiderata: GBH captures object boundaries best; SWA has the best potential for region compression; and TSP achieves the best undersegmentation error.</description><subject>Agglomeration</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial Intelligence</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Boundaries</subject><subject>Compressing</subject><subject>Compression tests</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Image segmentation</subject><subject>Libraries</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Segmentation</subject><subject>Video</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU2P0zAQhi0EEqXwA7hZ4gKHLOPPxNy6qwKVKoEorLhZXmdcsqRx107Q9t_jKhxYJDSHkUbPO18vIS8ZXDCA-m1mjGtRAdMVGNCVekQWTNWiYhLUY7IAw6FS2rCn5FnOtwDAGy4WZL3dXO6uv7-jK7qbjph-xXvs6ba7SS6dqBtaeomD_3Fw6ScNMdG1S_2JXnctRvo5RY85d8P-OXkSXJ_xxZ-8JN_er79efay2nz5srlbbykvOx0p4pblxjXFCgpaCCQ6igdYZhbzWQTr0UrZ1MK4kqQIY7xkafYM8eK7Ekrye-x5TvJswj_bQZY997waMU7asEUo1AsrhS_LqH_Q2Tmko21lmVA1lfqMLdTFTe9ej7YYQx-R8iRYPnY8Dhq7UV7IGaUQN57ZvHggKM-L9uHdTznaz-_KQZTPrU8w5YbDH1JVPniwDe3bNzq7Z4po9u2bPF_JZkws77DH9tfZ_Rb8B4t6VxA</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Xu, Chenliang</creator><creator>Corso, Jason J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>LIBSVX: A Supervoxel Library and Benchmark for Early Video Processing</title><author>Xu, Chenliang ; Corso, Jason J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-3c5629a89a3406431320380da95e276f4aec44d7f9a44d45f09cc1e96be2fc253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agglomeration</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial Intelligence</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Boundaries</topic><topic>Compressing</topic><topic>Compression tests</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Image segmentation</topic><topic>Libraries</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Segmentation</topic><topic>Video</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chenliang</creatorcontrib><creatorcontrib>Corso, Jason J.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chenliang</au><au>Corso, Jason J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LIBSVX: A Supervoxel Library and Benchmark for Early Video Processing</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>119</volume><issue>3</issue><spage>272</spage><epage>290</epage><pages>272-290</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Supervoxel segmentation has strong potential to be incorporated into early video analysis as superpixel segmentation has in image analysis. However, there are many plausible supervoxel methods and little understanding as to when and where each is most appropriate. Indeed, we are not aware of a single comparative study on supervoxel segmentation. To that end, we study seven supervoxel algorithms, including both off-line and streaming methods, in the context of what we consider to be a good supervoxel: namely, spatiotemporal uniformity, object/region boundary detection, region compression and parsimony. For the evaluation we propose a comprehensive suite of seven quality metrics to measure these desirable supervoxel characteristics. In addition, we evaluate the methods in a supervoxel classification task as a proxy for subsequent high-level uses of the supervoxels in video analysis. We use six existing benchmark video datasets with a variety of content-types and dense human annotations. Our findings have led us to conclusive evidence that the hierarchical graph-based (GBH), segmentation by weighted aggregation (SWA) and temporal superpixels (TSP) methods are the top-performers among the seven methods. They all perform well in terms of segmentation accuracy, but vary in regard to the other desiderata: GBH captures object boundaries best; SWA has the best potential for region compression; and TSP achieves the best undersegmentation error.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-016-0906-5</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2016-09, Vol.119 (3), p.272-290
issn 0920-5691
1573-1405
language eng
recordid cdi_proquest_miscellaneous_1835583057
source Springer Nature - Complete Springer Journals
subjects Agglomeration
Algorithms
Annotations
Artificial Intelligence
Benchmarking
Benchmarks
Boundaries
Compressing
Compression tests
Computer Imaging
Computer Science
Image analysis
Image processing
Image Processing and Computer Vision
Image segmentation
Libraries
Pattern Recognition
Pattern Recognition and Graphics
Segmentation
Video
Vision
title LIBSVX: A Supervoxel Library and Benchmark for Early Video Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A01%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LIBSVX:%20A%20Supervoxel%20Library%20and%20Benchmark%20for%20Early%20Video%20Processing&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Xu,%20Chenliang&rft.date=2016-09-01&rft.volume=119&rft.issue=3&rft.spage=272&rft.epage=290&rft.pages=272-290&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-016-0906-5&rft_dat=%3Cgale_proqu%3EA470493707%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957006486&rft_id=info:pmid/&rft_galeid=A470493707&rfr_iscdi=true