A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery

In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2015-01, Vol.5 (89), p.72825-72829
Hauptverfasser: Sun, Zixu, Cao, Can, Han, Wei-Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72829
container_issue 89
container_start_page 72825
container_title RSC advances
container_volume 5
creator Sun, Zixu
Cao, Can
Han, Wei-Qiang
description In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used to characterize the phases and to observe surface morphologies. This anode material exhibits good electrochemical performance in LIBs with high reversible capacity and cycling stability. The good electrochemical properties could be ascribed to the short transport/diffusion path of electrons and lithium ions and the high contact area between the electrode and electrolyte that results from the nanostructured SnO2. This is low-cost, facile and scalable for mass production of SnO2 nanocomposites as a potential anode material for the next-generation LIBs.
doi_str_mv 10.1039/c5ra12295c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835581676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835581676</sourcerecordid><originalsourceid>FETCH-LOGICAL-j254t-96b13939f1911f7405c6c45793201d605294306c3312906b9da78cd091c1e1663</originalsourceid><addsrcrecordid>eNotzM1OAyEUBWBiYmJTu_EJWLpBuTDcKcum8S9p0oW6bhiGUSoDCozGt7dNPZtzchYfIVfAb4BLfWtVNiCEVvaMzARvkAmO-oIsStnzQ1CBQJgRv6LFmmC64OiQ8miqT5GmgUYTE3uOW0EPo3e0d9l_u54OOY20-khHV01gKb-Z6O3hNqP7SfmjHBkafH3308iOWGdqdfn3kpwPJhS3-O85eb2_e1k_ss324Wm92rC9UE1lGjuQWuoBNMDQNlxZtI1qtRQceuRK6EZytFKC0Bw73Zt2aXuuwYIDRDkn1yf3M6evyZW6G32xLgQTXZrKDpZSqSVgi_IP76xYfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835581676</pqid></control><display><type>article</type><title>A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sun, Zixu ; Cao, Can ; Han, Wei-Qiang</creator><creatorcontrib>Sun, Zixu ; Cao, Can ; Han, Wei-Qiang</creatorcontrib><description>In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used to characterize the phases and to observe surface morphologies. This anode material exhibits good electrochemical performance in LIBs with high reversible capacity and cycling stability. The good electrochemical properties could be ascribed to the short transport/diffusion path of electrons and lithium ions and the high contact area between the electrode and electrolyte that results from the nanostructured SnO2. This is low-cost, facile and scalable for mass production of SnO2 nanocomposites as a potential anode material for the next-generation LIBs.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c5ra12295c</identifier><language>eng</language><subject>Anodes ; Electrochemical analysis ; Lithium-ion batteries ; Mass production ; Metal-organic frameworks ; Nanostructure ; Scanning electron microscopy ; Specific surface ; Tin dioxide</subject><ispartof>RSC advances, 2015-01, Vol.5 (89), p.72825-72829</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sun, Zixu</creatorcontrib><creatorcontrib>Cao, Can</creatorcontrib><creatorcontrib>Han, Wei-Qiang</creatorcontrib><title>A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery</title><title>RSC advances</title><description>In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used to characterize the phases and to observe surface morphologies. This anode material exhibits good electrochemical performance in LIBs with high reversible capacity and cycling stability. The good electrochemical properties could be ascribed to the short transport/diffusion path of electrons and lithium ions and the high contact area between the electrode and electrolyte that results from the nanostructured SnO2. This is low-cost, facile and scalable for mass production of SnO2 nanocomposites as a potential anode material for the next-generation LIBs.</description><subject>Anodes</subject><subject>Electrochemical analysis</subject><subject>Lithium-ion batteries</subject><subject>Mass production</subject><subject>Metal-organic frameworks</subject><subject>Nanostructure</subject><subject>Scanning electron microscopy</subject><subject>Specific surface</subject><subject>Tin dioxide</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotzM1OAyEUBWBiYmJTu_EJWLpBuTDcKcum8S9p0oW6bhiGUSoDCozGt7dNPZtzchYfIVfAb4BLfWtVNiCEVvaMzARvkAmO-oIsStnzQ1CBQJgRv6LFmmC64OiQ8miqT5GmgUYTE3uOW0EPo3e0d9l_u54OOY20-khHV01gKb-Z6O3hNqP7SfmjHBkafH3308iOWGdqdfn3kpwPJhS3-O85eb2_e1k_ss324Wm92rC9UE1lGjuQWuoBNMDQNlxZtI1qtRQceuRK6EZytFKC0Bw73Zt2aXuuwYIDRDkn1yf3M6evyZW6G32xLgQTXZrKDpZSqSVgi_IP76xYfw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Sun, Zixu</creator><creator>Cao, Can</creator><creator>Han, Wei-Qiang</creator><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150101</creationdate><title>A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery</title><author>Sun, Zixu ; Cao, Can ; Han, Wei-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j254t-96b13939f1911f7405c6c45793201d605294306c3312906b9da78cd091c1e1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anodes</topic><topic>Electrochemical analysis</topic><topic>Lithium-ion batteries</topic><topic>Mass production</topic><topic>Metal-organic frameworks</topic><topic>Nanostructure</topic><topic>Scanning electron microscopy</topic><topic>Specific surface</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zixu</creatorcontrib><creatorcontrib>Cao, Can</creatorcontrib><creatorcontrib>Han, Wei-Qiang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zixu</au><au>Cao, Can</au><au>Han, Wei-Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery</atitle><jtitle>RSC advances</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>5</volume><issue>89</issue><spage>72825</spage><epage>72829</epage><pages>72825-72829</pages><eissn>2046-2069</eissn><abstract>In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used to characterize the phases and to observe surface morphologies. This anode material exhibits good electrochemical performance in LIBs with high reversible capacity and cycling stability. The good electrochemical properties could be ascribed to the short transport/diffusion path of electrons and lithium ions and the high contact area between the electrode and electrolyte that results from the nanostructured SnO2. This is low-cost, facile and scalable for mass production of SnO2 nanocomposites as a potential anode material for the next-generation LIBs.</abstract><doi>10.1039/c5ra12295c</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2015-01, Vol.5 (89), p.72825-72829
issn 2046-2069
language eng
recordid cdi_proquest_miscellaneous_1835581676
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Electrochemical analysis
Lithium-ion batteries
Mass production
Metal-organic frameworks
Nanostructure
Scanning electron microscopy
Specific surface
Tin dioxide
title A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20scalable%20formation%20of%20nano-SnO2%20anode%20derived%20from%20tin%20metal-organic%20frameworks%20for%20lithium-ion%20battery&rft.jtitle=RSC%20advances&rft.au=Sun,%20Zixu&rft.date=2015-01-01&rft.volume=5&rft.issue=89&rft.spage=72825&rft.epage=72829&rft.pages=72825-72829&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c5ra12295c&rft_dat=%3Cproquest%3E1835581676%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835581676&rft_id=info:pmid/&rfr_iscdi=true