A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery
In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used...
Gespeichert in:
Veröffentlicht in: | RSC advances 2015-01, Vol.5 (89), p.72825-72829 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72829 |
---|---|
container_issue | 89 |
container_start_page | 72825 |
container_title | RSC advances |
container_volume | 5 |
creator | Sun, Zixu Cao, Can Han, Wei-Qiang |
description | In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used to characterize the phases and to observe surface morphologies. This anode material exhibits good electrochemical performance in LIBs with high reversible capacity and cycling stability. The good electrochemical properties could be ascribed to the short transport/diffusion path of electrons and lithium ions and the high contact area between the electrode and electrolyte that results from the nanostructured SnO2. This is low-cost, facile and scalable for mass production of SnO2 nanocomposites as a potential anode material for the next-generation LIBs. |
doi_str_mv | 10.1039/c5ra12295c |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835581676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835581676</sourcerecordid><originalsourceid>FETCH-LOGICAL-j254t-96b13939f1911f7405c6c45793201d605294306c3312906b9da78cd091c1e1663</originalsourceid><addsrcrecordid>eNotzM1OAyEUBWBiYmJTu_EJWLpBuTDcKcum8S9p0oW6bhiGUSoDCozGt7dNPZtzchYfIVfAb4BLfWtVNiCEVvaMzARvkAmO-oIsStnzQ1CBQJgRv6LFmmC64OiQ8miqT5GmgUYTE3uOW0EPo3e0d9l_u54OOY20-khHV01gKb-Z6O3hNqP7SfmjHBkafH3308iOWGdqdfn3kpwPJhS3-O85eb2_e1k_ss324Wm92rC9UE1lGjuQWuoBNMDQNlxZtI1qtRQceuRK6EZytFKC0Bw73Zt2aXuuwYIDRDkn1yf3M6evyZW6G32xLgQTXZrKDpZSqSVgi_IP76xYfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835581676</pqid></control><display><type>article</type><title>A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sun, Zixu ; Cao, Can ; Han, Wei-Qiang</creator><creatorcontrib>Sun, Zixu ; Cao, Can ; Han, Wei-Qiang</creatorcontrib><description>In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used to characterize the phases and to observe surface morphologies. This anode material exhibits good electrochemical performance in LIBs with high reversible capacity and cycling stability. The good electrochemical properties could be ascribed to the short transport/diffusion path of electrons and lithium ions and the high contact area between the electrode and electrolyte that results from the nanostructured SnO2. This is low-cost, facile and scalable for mass production of SnO2 nanocomposites as a potential anode material for the next-generation LIBs.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/c5ra12295c</identifier><language>eng</language><subject>Anodes ; Electrochemical analysis ; Lithium-ion batteries ; Mass production ; Metal-organic frameworks ; Nanostructure ; Scanning electron microscopy ; Specific surface ; Tin dioxide</subject><ispartof>RSC advances, 2015-01, Vol.5 (89), p.72825-72829</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sun, Zixu</creatorcontrib><creatorcontrib>Cao, Can</creatorcontrib><creatorcontrib>Han, Wei-Qiang</creatorcontrib><title>A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery</title><title>RSC advances</title><description>In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used to characterize the phases and to observe surface morphologies. This anode material exhibits good electrochemical performance in LIBs with high reversible capacity and cycling stability. The good electrochemical properties could be ascribed to the short transport/diffusion path of electrons and lithium ions and the high contact area between the electrode and electrolyte that results from the nanostructured SnO2. This is low-cost, facile and scalable for mass production of SnO2 nanocomposites as a potential anode material for the next-generation LIBs.</description><subject>Anodes</subject><subject>Electrochemical analysis</subject><subject>Lithium-ion batteries</subject><subject>Mass production</subject><subject>Metal-organic frameworks</subject><subject>Nanostructure</subject><subject>Scanning electron microscopy</subject><subject>Specific surface</subject><subject>Tin dioxide</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotzM1OAyEUBWBiYmJTu_EJWLpBuTDcKcum8S9p0oW6bhiGUSoDCozGt7dNPZtzchYfIVfAb4BLfWtVNiCEVvaMzARvkAmO-oIsStnzQ1CBQJgRv6LFmmC64OiQ8miqT5GmgUYTE3uOW0EPo3e0d9l_u54OOY20-khHV01gKb-Z6O3hNqP7SfmjHBkafH3308iOWGdqdfn3kpwPJhS3-O85eb2_e1k_ss324Wm92rC9UE1lGjuQWuoBNMDQNlxZtI1qtRQceuRK6EZytFKC0Bw73Zt2aXuuwYIDRDkn1yf3M6evyZW6G32xLgQTXZrKDpZSqSVgi_IP76xYfw</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Sun, Zixu</creator><creator>Cao, Can</creator><creator>Han, Wei-Qiang</creator><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20150101</creationdate><title>A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery</title><author>Sun, Zixu ; Cao, Can ; Han, Wei-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j254t-96b13939f1911f7405c6c45793201d605294306c3312906b9da78cd091c1e1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anodes</topic><topic>Electrochemical analysis</topic><topic>Lithium-ion batteries</topic><topic>Mass production</topic><topic>Metal-organic frameworks</topic><topic>Nanostructure</topic><topic>Scanning electron microscopy</topic><topic>Specific surface</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zixu</creatorcontrib><creatorcontrib>Cao, Can</creatorcontrib><creatorcontrib>Han, Wei-Qiang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zixu</au><au>Cao, Can</au><au>Han, Wei-Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery</atitle><jtitle>RSC advances</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>5</volume><issue>89</issue><spage>72825</spage><epage>72829</epage><pages>72825-72829</pages><eissn>2046-2069</eissn><abstract>In this work, for the first time, we synthesize a SnO2 nanomaterial through the calcination of tin metal-organic framework (MOF) precursors. X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy, and the Brunauer-Emmett-Teller specific surface area are used to characterize the phases and to observe surface morphologies. This anode material exhibits good electrochemical performance in LIBs with high reversible capacity and cycling stability. The good electrochemical properties could be ascribed to the short transport/diffusion path of electrons and lithium ions and the high contact area between the electrode and electrolyte that results from the nanostructured SnO2. This is low-cost, facile and scalable for mass production of SnO2 nanocomposites as a potential anode material for the next-generation LIBs.</abstract><doi>10.1039/c5ra12295c</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2046-2069 |
ispartof | RSC advances, 2015-01, Vol.5 (89), p.72825-72829 |
issn | 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835581676 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Electrochemical analysis Lithium-ion batteries Mass production Metal-organic frameworks Nanostructure Scanning electron microscopy Specific surface Tin dioxide |
title | A scalable formation of nano-SnO2 anode derived from tin metal-organic frameworks for lithium-ion battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20scalable%20formation%20of%20nano-SnO2%20anode%20derived%20from%20tin%20metal-organic%20frameworks%20for%20lithium-ion%20battery&rft.jtitle=RSC%20advances&rft.au=Sun,%20Zixu&rft.date=2015-01-01&rft.volume=5&rft.issue=89&rft.spage=72825&rft.epage=72829&rft.pages=72825-72829&rft.eissn=2046-2069&rft_id=info:doi/10.1039/c5ra12295c&rft_dat=%3Cproquest%3E1835581676%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835581676&rft_id=info:pmid/&rfr_iscdi=true |