Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy

Rationale Water isotope analysis for δ2H and δ18O values via laser spectroscopy is routine for many laboratories. While recent work has added the δ17O value to the high‐precision suite, it does not follow that researchers will routinely obtain high precision 17O excess (Δ17O). We demonstrate the rou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid communications in mass spectrometry 2016-09, Vol.30 (18), p.2059-2069
Hauptverfasser: Schauer, Andrew J., Schoenemann, Spruce W., Steig, Eric J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2069
container_issue 18
container_start_page 2059
container_title Rapid communications in mass spectrometry
container_volume 30
creator Schauer, Andrew J.
Schoenemann, Spruce W.
Steig, Eric J.
description Rationale Water isotope analysis for δ2H and δ18O values via laser spectroscopy is routine for many laboratories. While recent work has added the δ17O value to the high‐precision suite, it does not follow that researchers will routinely obtain high precision 17O excess (Δ17O). We demonstrate the routine acquisition of high‐precision δ2H, δ17O, δ18O, d, and Δ17O values using a commercially available laser spectroscopy instrument. Methods We use a Picarro L2140‐i cavity ring‐down spectroscopy analyzer with discrete liquid injections into an A0211 vaporization module by a Leap Technologies LC PAL autosampler. The instrument is run in two modes: (1) as recommended by the manufacturer (default mode) and (2) after modifying select default settings and using alternative data types (advanced mode). Reference waters analyzed over the course of 15 months while running unknown samples are used to assess system performance. Results The default mode provides precision for δ2H, δ17O, δ18O, d, and Δ17O values that may be sufficient for many applications. When using the advanced mode, we reach a higher level of precision for δ2H, δ17O, δ18O, d, and Δ17O values (0.4 mUr, 0.04 mUr, 0.07 mUr, 0.5 mUr, and 8 μUr, respectively, where mUr = 0.001 = ‰, and μUr = 10–6) in a shorter amount of time and with fewer syringe actuations than in the default mode. The improved performance results from an increase in the total integration time for each injected water pulse. Conclusions Our recommended approach for routine δ2H, δ17O, δ18O, d and Δ17O measurements with the Picarro L2140‐i is to make use of conditioning vials, use fewer injections (5 per vial) with greater pulse duration (520 seconds (s) per injection) and use only the first 120 s for δ2H measurements and all 520 s for δ17O and δ18O measurements. Although the sample throughput is 10 unknowns per day, our optimal approach reduces the number of syringe actuations, the effect of memory, and the total analysis time, while improving precision relative to the default approach. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rcm.7682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835579836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835579836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4202-70fc0de326f614fcbd5ec18e2db9d9eed479ae5817570e3e85e584d58923e8e33</originalsourceid><addsrcrecordid>eNqN0V1rFDEUBuAgit1WwV8gAW-8Sc3HZJJcytKu2vrRUvEyZDNn2tTZyZjMuJ1_b8quRQTBq5MDDy_kvAi9YPSYUcrfJL85VrXmj9CCUaMI5YI9RgtqJCMVM_oAHeZ8SyljktOn6ICrqjZciwVaX8ZpDD3gm3B9Q4YEPuQQe-x61805ZBxbPKYwdIC3boREQo5jHAAnN4aY8ZRDf429-xnGGafyJk3c9jgP4McUs4_D_Aw9aV2X4fl-HqGvpydXy3fk_PPq_fLtOfEVp5wo2nragOB1W7Oq9etGgmcaeLM2jQFoKmUcSM2UVBQEaFmWqpHa8LKAEEfo9S53SPHHBHm0m5A9dJ3rIU7ZMi2kVEaL-j8oY7oSlVCFvvqL3sYplevsFK-FMH8E-vLpnKC1Qwobl2bLqL2vyJaK7H1Fhb7cB07rDTQP8HcnBZAd2IYO5n8G2cvlx33g3oc8wt2Dd-m7rZVQ0n77tLKrsy8XpxdnH-yV-AUjdap7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811263396</pqid></control><display><type>article</type><title>Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schauer, Andrew J. ; Schoenemann, Spruce W. ; Steig, Eric J.</creator><creatorcontrib>Schauer, Andrew J. ; Schoenemann, Spruce W. ; Steig, Eric J.</creatorcontrib><description>Rationale Water isotope analysis for δ2H and δ18O values via laser spectroscopy is routine for many laboratories. While recent work has added the δ17O value to the high‐precision suite, it does not follow that researchers will routinely obtain high precision 17O excess (Δ17O). We demonstrate the routine acquisition of high‐precision δ2H, δ17O, δ18O, d, and Δ17O values using a commercially available laser spectroscopy instrument. Methods We use a Picarro L2140‐i cavity ring‐down spectroscopy analyzer with discrete liquid injections into an A0211 vaporization module by a Leap Technologies LC PAL autosampler. The instrument is run in two modes: (1) as recommended by the manufacturer (default mode) and (2) after modifying select default settings and using alternative data types (advanced mode). Reference waters analyzed over the course of 15 months while running unknown samples are used to assess system performance. Results The default mode provides precision for δ2H, δ17O, δ18O, d, and Δ17O values that may be sufficient for many applications. When using the advanced mode, we reach a higher level of precision for δ2H, δ17O, δ18O, d, and Δ17O values (0.4 mUr, 0.04 mUr, 0.07 mUr, 0.5 mUr, and 8 μUr, respectively, where mUr = 0.001 = ‰, and μUr = 10–6) in a shorter amount of time and with fewer syringe actuations than in the default mode. The improved performance results from an increase in the total integration time for each injected water pulse. Conclusions Our recommended approach for routine δ2H, δ17O, δ18O, d and Δ17O measurements with the Picarro L2140‐i is to make use of conditioning vials, use fewer injections (5 per vial) with greater pulse duration (520 seconds (s) per injection) and use only the first 120 s for δ2H measurements and all 520 s for δ17O and δ18O measurements. Although the sample throughput is 10 unknowns per day, our optimal approach reduces the number of syringe actuations, the effect of memory, and the total analysis time, while improving precision relative to the default approach. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.7682</identifier><identifier>PMID: 27469283</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Actuation ; Holes ; Laser spectroscopy ; Routines ; Spectroscopy ; Syringes ; Vaporization ; Vials</subject><ispartof>Rapid communications in mass spectrometry, 2016-09, Vol.30 (18), p.2059-2069</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4202-70fc0de326f614fcbd5ec18e2db9d9eed479ae5817570e3e85e584d58923e8e33</citedby><cites>FETCH-LOGICAL-c4202-70fc0de326f614fcbd5ec18e2db9d9eed479ae5817570e3e85e584d58923e8e33</cites><orcidid>0000-0002-8191-5549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcm.7682$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcm.7682$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27469283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schauer, Andrew J.</creatorcontrib><creatorcontrib>Schoenemann, Spruce W.</creatorcontrib><creatorcontrib>Steig, Eric J.</creatorcontrib><title>Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun. Mass Spectrom</addtitle><description>Rationale Water isotope analysis for δ2H and δ18O values via laser spectroscopy is routine for many laboratories. While recent work has added the δ17O value to the high‐precision suite, it does not follow that researchers will routinely obtain high precision 17O excess (Δ17O). We demonstrate the routine acquisition of high‐precision δ2H, δ17O, δ18O, d, and Δ17O values using a commercially available laser spectroscopy instrument. Methods We use a Picarro L2140‐i cavity ring‐down spectroscopy analyzer with discrete liquid injections into an A0211 vaporization module by a Leap Technologies LC PAL autosampler. The instrument is run in two modes: (1) as recommended by the manufacturer (default mode) and (2) after modifying select default settings and using alternative data types (advanced mode). Reference waters analyzed over the course of 15 months while running unknown samples are used to assess system performance. Results The default mode provides precision for δ2H, δ17O, δ18O, d, and Δ17O values that may be sufficient for many applications. When using the advanced mode, we reach a higher level of precision for δ2H, δ17O, δ18O, d, and Δ17O values (0.4 mUr, 0.04 mUr, 0.07 mUr, 0.5 mUr, and 8 μUr, respectively, where mUr = 0.001 = ‰, and μUr = 10–6) in a shorter amount of time and with fewer syringe actuations than in the default mode. The improved performance results from an increase in the total integration time for each injected water pulse. Conclusions Our recommended approach for routine δ2H, δ17O, δ18O, d and Δ17O measurements with the Picarro L2140‐i is to make use of conditioning vials, use fewer injections (5 per vial) with greater pulse duration (520 seconds (s) per injection) and use only the first 120 s for δ2H measurements and all 520 s for δ17O and δ18O measurements. Although the sample throughput is 10 unknowns per day, our optimal approach reduces the number of syringe actuations, the effect of memory, and the total analysis time, while improving precision relative to the default approach. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Actuation</subject><subject>Holes</subject><subject>Laser spectroscopy</subject><subject>Routines</subject><subject>Spectroscopy</subject><subject>Syringes</subject><subject>Vaporization</subject><subject>Vials</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0V1rFDEUBuAgit1WwV8gAW-8Sc3HZJJcytKu2vrRUvEyZDNn2tTZyZjMuJ1_b8quRQTBq5MDDy_kvAi9YPSYUcrfJL85VrXmj9CCUaMI5YI9RgtqJCMVM_oAHeZ8SyljktOn6ICrqjZciwVaX8ZpDD3gm3B9Q4YEPuQQe-x61805ZBxbPKYwdIC3boREQo5jHAAnN4aY8ZRDf429-xnGGafyJk3c9jgP4McUs4_D_Aw9aV2X4fl-HqGvpydXy3fk_PPq_fLtOfEVp5wo2nragOB1W7Oq9etGgmcaeLM2jQFoKmUcSM2UVBQEaFmWqpHa8LKAEEfo9S53SPHHBHm0m5A9dJ3rIU7ZMi2kVEaL-j8oY7oSlVCFvvqL3sYplevsFK-FMH8E-vLpnKC1Qwobl2bLqL2vyJaK7H1Fhb7cB07rDTQP8HcnBZAd2IYO5n8G2cvlx33g3oc8wt2Dd-m7rZVQ0n77tLKrsy8XpxdnH-yV-AUjdap7</recordid><startdate>20160930</startdate><enddate>20160930</enddate><creator>Schauer, Andrew J.</creator><creator>Schoenemann, Spruce W.</creator><creator>Steig, Eric J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8191-5549</orcidid></search><sort><creationdate>20160930</creationdate><title>Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy</title><author>Schauer, Andrew J. ; Schoenemann, Spruce W. ; Steig, Eric J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4202-70fc0de326f614fcbd5ec18e2db9d9eed479ae5817570e3e85e584d58923e8e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Actuation</topic><topic>Holes</topic><topic>Laser spectroscopy</topic><topic>Routines</topic><topic>Spectroscopy</topic><topic>Syringes</topic><topic>Vaporization</topic><topic>Vials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schauer, Andrew J.</creatorcontrib><creatorcontrib>Schoenemann, Spruce W.</creatorcontrib><creatorcontrib>Steig, Eric J.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schauer, Andrew J.</au><au>Schoenemann, Spruce W.</au><au>Steig, Eric J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun. Mass Spectrom</addtitle><date>2016-09-30</date><risdate>2016</risdate><volume>30</volume><issue>18</issue><spage>2059</spage><epage>2069</epage><pages>2059-2069</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>Rationale Water isotope analysis for δ2H and δ18O values via laser spectroscopy is routine for many laboratories. While recent work has added the δ17O value to the high‐precision suite, it does not follow that researchers will routinely obtain high precision 17O excess (Δ17O). We demonstrate the routine acquisition of high‐precision δ2H, δ17O, δ18O, d, and Δ17O values using a commercially available laser spectroscopy instrument. Methods We use a Picarro L2140‐i cavity ring‐down spectroscopy analyzer with discrete liquid injections into an A0211 vaporization module by a Leap Technologies LC PAL autosampler. The instrument is run in two modes: (1) as recommended by the manufacturer (default mode) and (2) after modifying select default settings and using alternative data types (advanced mode). Reference waters analyzed over the course of 15 months while running unknown samples are used to assess system performance. Results The default mode provides precision for δ2H, δ17O, δ18O, d, and Δ17O values that may be sufficient for many applications. When using the advanced mode, we reach a higher level of precision for δ2H, δ17O, δ18O, d, and Δ17O values (0.4 mUr, 0.04 mUr, 0.07 mUr, 0.5 mUr, and 8 μUr, respectively, where mUr = 0.001 = ‰, and μUr = 10–6) in a shorter amount of time and with fewer syringe actuations than in the default mode. The improved performance results from an increase in the total integration time for each injected water pulse. Conclusions Our recommended approach for routine δ2H, δ17O, δ18O, d and Δ17O measurements with the Picarro L2140‐i is to make use of conditioning vials, use fewer injections (5 per vial) with greater pulse duration (520 seconds (s) per injection) and use only the first 120 s for δ2H measurements and all 520 s for δ17O and δ18O measurements. Although the sample throughput is 10 unknowns per day, our optimal approach reduces the number of syringe actuations, the effect of memory, and the total analysis time, while improving precision relative to the default approach. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>27469283</pmid><doi>10.1002/rcm.7682</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8191-5549</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2016-09, Vol.30 (18), p.2059-2069
issn 0951-4198
1097-0231
language eng
recordid cdi_proquest_miscellaneous_1835579836
source Wiley Online Library Journals Frontfile Complete
subjects Actuation
Holes
Laser spectroscopy
Routines
Spectroscopy
Syringes
Vaporization
Vials
title Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Routine%20high-precision%20analysis%20of%20triple%20water-isotope%20ratios%20using%20cavity%20ring-down%20spectroscopy&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Schauer,%20Andrew%20J.&rft.date=2016-09-30&rft.volume=30&rft.issue=18&rft.spage=2059&rft.epage=2069&rft.pages=2059-2069&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.7682&rft_dat=%3Cproquest_cross%3E1835579836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811263396&rft_id=info:pmid/27469283&rfr_iscdi=true