Baire spaces and infinite games

It is well known that if the nonempty player of the Banach–Mazur game has a winning strategy on a space, then that space is Baire in all powers even in the box product topology. The converse of this implication may also be true: We know of no consistency result to the contrary. In this paper we esta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2016-02, Vol.55 (1-2), p.85-104
Hauptverfasser: Galvin, Fred, Scheepers, Marion
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1-2
container_start_page 85
container_title Archive for mathematical logic
container_volume 55
creator Galvin, Fred
Scheepers, Marion
description It is well known that if the nonempty player of the Banach–Mazur game has a winning strategy on a space, then that space is Baire in all powers even in the box product topology. The converse of this implication may also be true: We know of no consistency result to the contrary. In this paper we establish the consistency of the converse relative to the consistency of the existence of a proper class of measurable cardinals.
doi_str_mv 10.1007/s00153-015-0461-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835579234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835579234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-a628756222fba914c183960ba9773f2ba8d32aaf7e76f6c5b7b3e95aebb9c8663</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wJUDbtxEk5v3UosvKLjRdcikSZnSztTcduG_N2UEQXBzzl1853A5hFxydssZM3fIGFeCVqFMak7tEZlwKYAyrdUxmTAnBFVW6lNyhriqNFjLJ-TqIXQlNbgNMWET-kXT9bnru11qlmGT8Jyc5LDGdPHjU_Lx9Pg-e6Hzt-fX2f2cRsndjgYN1igNALkNjsvIrXCa1dsYkaENdiEghGyS0VlH1ZpWJKdCalsXrdZiSm7G3m0ZPvcJd37TYUzrdejTsEdf-5QyDoSs6PUfdDXsS1-_88C0NCBBmErxkYplQCwp-23pNqF8ec78YTI_Tuar-MNk3tYMjBmsbL9M5bf5_9A3ALprhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064724237</pqid></control><display><type>article</type><title>Baire spaces and infinite games</title><source>SpringerNature Journals</source><creator>Galvin, Fred ; Scheepers, Marion</creator><creatorcontrib>Galvin, Fred ; Scheepers, Marion</creatorcontrib><description>It is well known that if the nonempty player of the Banach–Mazur game has a winning strategy on a space, then that space is Baire in all powers even in the box product topology. The converse of this implication may also be true: We know of no consistency result to the contrary. In this paper we establish the consistency of the converse relative to the consistency of the existence of a proper class of measurable cardinals.</description><identifier>ISSN: 0933-5846</identifier><identifier>EISSN: 1432-0665</identifier><identifier>DOI: 10.1007/s00153-015-0461-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Archives ; Consistency ; Game theory ; Games ; Mathematical logic ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Players ; Strategy ; Topology</subject><ispartof>Archive for mathematical logic, 2016-02, Vol.55 (1-2), p.85-104</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-a628756222fba914c183960ba9773f2ba8d32aaf7e76f6c5b7b3e95aebb9c8663</citedby><cites>FETCH-LOGICAL-c419t-a628756222fba914c183960ba9773f2ba8d32aaf7e76f6c5b7b3e95aebb9c8663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00153-015-0461-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00153-015-0461-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Galvin, Fred</creatorcontrib><creatorcontrib>Scheepers, Marion</creatorcontrib><title>Baire spaces and infinite games</title><title>Archive for mathematical logic</title><addtitle>Arch. Math. Logic</addtitle><description>It is well known that if the nonempty player of the Banach–Mazur game has a winning strategy on a space, then that space is Baire in all powers even in the box product topology. The converse of this implication may also be true: We know of no consistency result to the contrary. In this paper we establish the consistency of the converse relative to the consistency of the existence of a proper class of measurable cardinals.</description><subject>Algebra</subject><subject>Archives</subject><subject>Consistency</subject><subject>Game theory</subject><subject>Games</subject><subject>Mathematical logic</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Players</subject><subject>Strategy</subject><subject>Topology</subject><issn>0933-5846</issn><issn>1432-0665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wJUDbtxEk5v3UosvKLjRdcikSZnSztTcduG_N2UEQXBzzl1853A5hFxydssZM3fIGFeCVqFMak7tEZlwKYAyrdUxmTAnBFVW6lNyhriqNFjLJ-TqIXQlNbgNMWET-kXT9bnru11qlmGT8Jyc5LDGdPHjU_Lx9Pg-e6Hzt-fX2f2cRsndjgYN1igNALkNjsvIrXCa1dsYkaENdiEghGyS0VlH1ZpWJKdCalsXrdZiSm7G3m0ZPvcJd37TYUzrdejTsEdf-5QyDoSs6PUfdDXsS1-_88C0NCBBmErxkYplQCwp-23pNqF8ec78YTI_Tuar-MNk3tYMjBmsbL9M5bf5_9A3ALprhA</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Galvin, Fred</creator><creator>Scheepers, Marion</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160201</creationdate><title>Baire spaces and infinite games</title><author>Galvin, Fred ; Scheepers, Marion</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-a628756222fba914c183960ba9773f2ba8d32aaf7e76f6c5b7b3e95aebb9c8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Archives</topic><topic>Consistency</topic><topic>Game theory</topic><topic>Games</topic><topic>Mathematical logic</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Players</topic><topic>Strategy</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galvin, Fred</creatorcontrib><creatorcontrib>Scheepers, Marion</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Archive for mathematical logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galvin, Fred</au><au>Scheepers, Marion</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Baire spaces and infinite games</atitle><jtitle>Archive for mathematical logic</jtitle><stitle>Arch. Math. Logic</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>55</volume><issue>1-2</issue><spage>85</spage><epage>104</epage><pages>85-104</pages><issn>0933-5846</issn><eissn>1432-0665</eissn><abstract>It is well known that if the nonempty player of the Banach–Mazur game has a winning strategy on a space, then that space is Baire in all powers even in the box product topology. The converse of this implication may also be true: We know of no consistency result to the contrary. In this paper we establish the consistency of the converse relative to the consistency of the existence of a proper class of measurable cardinals.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00153-015-0461-8</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0933-5846
ispartof Archive for mathematical logic, 2016-02, Vol.55 (1-2), p.85-104
issn 0933-5846
1432-0665
language eng
recordid cdi_proquest_miscellaneous_1835579234
source SpringerNature Journals
subjects Algebra
Archives
Consistency
Game theory
Games
Mathematical logic
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Players
Strategy
Topology
title Baire spaces and infinite games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Baire%20spaces%20and%20infinite%20games&rft.jtitle=Archive%20for%20mathematical%20logic&rft.au=Galvin,%20Fred&rft.date=2016-02-01&rft.volume=55&rft.issue=1-2&rft.spage=85&rft.epage=104&rft.pages=85-104&rft.issn=0933-5846&rft.eissn=1432-0665&rft_id=info:doi/10.1007/s00153-015-0461-8&rft_dat=%3Cproquest_cross%3E1835579234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064724237&rft_id=info:pmid/&rfr_iscdi=true