Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60
With the increased application of magnesium high-pressure die castings (HPDC), it is necessary to better understand process-structure-mechanical properties. In the case of HPDC, ductility and yield strength strongly depend on porosity, grain size, and the skin thickness. In this contribution, a new...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2016-10, Vol.47 (10), p.5159-5168 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5168 |
---|---|
container_issue | 10 |
container_start_page | 5159 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 47 |
creator | Sharifi, P. Fan, Y. Anaraki, H. B. Banerjee, A. Sadayappan, K. Wood, J. T. |
description | With the increased application of magnesium high-pressure die castings (HPDC), it is necessary to better understand process-structure-mechanical properties. In the case of HPDC, ductility and yield strength strongly depend on porosity, grain size, and the skin thickness. In this contribution, a new method is developed which employs knowledge of local cooling rates to predict the grain size and the skin thickness of HPDC magnesium components. The centreline cooling curve, together with the die temperature, and the thermodynamic properties of the alloy are then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting. The local cooling rate is used to calculate the resulting grain size and skin thickness
via
established relationships. The prediction of skin thickness and average grain size of skin region determined from this method compares quite well with the experimental results. Due to the presence of externally solidified grains, this method underestimates the grain size value in the core region, as compared to the experiment. Finally, we predict the locally varying yield strength using a modified Hall-Petch equation. |
doi_str_mv | 10.1007/s11661-016-3698-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835577546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835577546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9ec1140a57c74c1f4a849e849329d1d2a0d84decf1898919ba33fe349b753f493</originalsourceid><addsrcrecordid>eNp1kF1LwzAUQIsoOKc_wLeAL75Uc5v0I4-jzg_YUESfY5bebB1dM5NWtn9vRn0QwYeQQM65XE4UXQK9AUrzWw-QZRBTyGKWiSLeHUUjSDmLQXB6HN40Z3GaJew0OvN-TSkFwbJR9DH9Uk2vutq2xBpSWtvU7ZK8qg7J1BjUnSfhq1shmaNeqbbWqiEvzm7RdTX6g3RXIymV78hcLVv0db8hk6axezKZZ_Q8OjGq8Xjxc4-j9_vpW_kYz54fnsrJLNaMiy4WqAE4VWmuc67BcFVwgeGwRFRQJYpWBa9QGyhEIUAsFGMGg7rIU2YCNo6uh7lbZz979J3c1F5j06gWbe8lFCxN8zzlWUCv_qBr27s2bBco4EXKQtFAwUBpZ713aOTW1Rvl9hKoPDSXQ3MZmstDc7kLTjI4PrDtEt2vyf9K3wSSgsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814853007</pqid></control><display><type>article</type><title>Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sharifi, P. ; Fan, Y. ; Anaraki, H. B. ; Banerjee, A. ; Sadayappan, K. ; Wood, J. T.</creator><creatorcontrib>Sharifi, P. ; Fan, Y. ; Anaraki, H. B. ; Banerjee, A. ; Sadayappan, K. ; Wood, J. T.</creatorcontrib><description>With the increased application of magnesium high-pressure die castings (HPDC), it is necessary to better understand process-structure-mechanical properties. In the case of HPDC, ductility and yield strength strongly depend on porosity, grain size, and the skin thickness. In this contribution, a new method is developed which employs knowledge of local cooling rates to predict the grain size and the skin thickness of HPDC magnesium components. The centreline cooling curve, together with the die temperature, and the thermodynamic properties of the alloy are then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting. The local cooling rate is used to calculate the resulting grain size and skin thickness
via
established relationships. The prediction of skin thickness and average grain size of skin region determined from this method compares quite well with the experimental results. Due to the presence of externally solidified grains, this method underestimates the grain size value in the core region, as compared to the experiment. Finally, we predict the locally varying yield strength using a modified Hall-Petch equation.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-016-3698-x</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Casting alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cooling rate ; Die casting ; Foundry practice ; Grain size ; Magnesium ; Materials Science ; Mathematical analysis ; Mechanical properties ; Metallic Materials ; Metallurgy ; Nanotechnology ; Phase boundaries ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-10, Vol.47 (10), p.5159-5168</ispartof><rights>Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources 2016</rights><rights>The Minerals, Metals & Materials Society and ASM International 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9ec1140a57c74c1f4a849e849329d1d2a0d84decf1898919ba33fe349b753f493</citedby><cites>FETCH-LOGICAL-c349t-9ec1140a57c74c1f4a849e849329d1d2a0d84decf1898919ba33fe349b753f493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-016-3698-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-016-3698-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sharifi, P.</creatorcontrib><creatorcontrib>Fan, Y.</creatorcontrib><creatorcontrib>Anaraki, H. B.</creatorcontrib><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Sadayappan, K.</creatorcontrib><creatorcontrib>Wood, J. T.</creatorcontrib><title>Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>With the increased application of magnesium high-pressure die castings (HPDC), it is necessary to better understand process-structure-mechanical properties. In the case of HPDC, ductility and yield strength strongly depend on porosity, grain size, and the skin thickness. In this contribution, a new method is developed which employs knowledge of local cooling rates to predict the grain size and the skin thickness of HPDC magnesium components. The centreline cooling curve, together with the die temperature, and the thermodynamic properties of the alloy are then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting. The local cooling rate is used to calculate the resulting grain size and skin thickness
via
established relationships. The prediction of skin thickness and average grain size of skin region determined from this method compares quite well with the experimental results. Due to the presence of externally solidified grains, this method underestimates the grain size value in the core region, as compared to the experiment. Finally, we predict the locally varying yield strength using a modified Hall-Petch equation.</description><subject>Alloys</subject><subject>Casting alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cooling rate</subject><subject>Die casting</subject><subject>Foundry practice</subject><subject>Grain size</subject><subject>Magnesium</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Nanotechnology</subject><subject>Phase boundaries</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF1LwzAUQIsoOKc_wLeAL75Uc5v0I4-jzg_YUESfY5bebB1dM5NWtn9vRn0QwYeQQM65XE4UXQK9AUrzWw-QZRBTyGKWiSLeHUUjSDmLQXB6HN40Z3GaJew0OvN-TSkFwbJR9DH9Uk2vutq2xBpSWtvU7ZK8qg7J1BjUnSfhq1shmaNeqbbWqiEvzm7RdTX6g3RXIymV78hcLVv0db8hk6axezKZZ_Q8OjGq8Xjxc4-j9_vpW_kYz54fnsrJLNaMiy4WqAE4VWmuc67BcFVwgeGwRFRQJYpWBa9QGyhEIUAsFGMGg7rIU2YCNo6uh7lbZz979J3c1F5j06gWbe8lFCxN8zzlWUCv_qBr27s2bBco4EXKQtFAwUBpZ713aOTW1Rvl9hKoPDSXQ3MZmstDc7kLTjI4PrDtEt2vyf9K3wSSgsQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Sharifi, P.</creator><creator>Fan, Y.</creator><creator>Anaraki, H. B.</creator><creator>Banerjee, A.</creator><creator>Sadayappan, K.</creator><creator>Wood, J. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20161001</creationdate><title>Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60</title><author>Sharifi, P. ; Fan, Y. ; Anaraki, H. B. ; Banerjee, A. ; Sadayappan, K. ; Wood, J. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9ec1140a57c74c1f4a849e849329d1d2a0d84decf1898919ba33fe349b753f493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloys</topic><topic>Casting alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cooling rate</topic><topic>Die casting</topic><topic>Foundry practice</topic><topic>Grain size</topic><topic>Magnesium</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Nanotechnology</topic><topic>Phase boundaries</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharifi, P.</creatorcontrib><creatorcontrib>Fan, Y.</creatorcontrib><creatorcontrib>Anaraki, H. B.</creatorcontrib><creatorcontrib>Banerjee, A.</creatorcontrib><creatorcontrib>Sadayappan, K.</creatorcontrib><creatorcontrib>Wood, J. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharifi, P.</au><au>Fan, Y.</au><au>Anaraki, H. B.</au><au>Banerjee, A.</au><au>Sadayappan, K.</au><au>Wood, J. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>47</volume><issue>10</issue><spage>5159</spage><epage>5168</epage><pages>5159-5168</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>With the increased application of magnesium high-pressure die castings (HPDC), it is necessary to better understand process-structure-mechanical properties. In the case of HPDC, ductility and yield strength strongly depend on porosity, grain size, and the skin thickness. In this contribution, a new method is developed which employs knowledge of local cooling rates to predict the grain size and the skin thickness of HPDC magnesium components. The centreline cooling curve, together with the die temperature, and the thermodynamic properties of the alloy are then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting. The local cooling rate is used to calculate the resulting grain size and skin thickness
via
established relationships. The prediction of skin thickness and average grain size of skin region determined from this method compares quite well with the experimental results. Due to the presence of externally solidified grains, this method underestimates the grain size value in the core region, as compared to the experiment. Finally, we predict the locally varying yield strength using a modified Hall-Petch equation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-016-3698-x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-10, Vol.47 (10), p.5159-5168 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835577546 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Casting alloys Characterization and Evaluation of Materials Chemistry and Materials Science Cooling rate Die casting Foundry practice Grain size Magnesium Materials Science Mathematical analysis Mechanical properties Metallic Materials Metallurgy Nanotechnology Phase boundaries Structural Materials Surfaces and Interfaces Thin Films |
title | Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Cooling%20Rate%20Effects%20on%20the%20Mechanical%20Properties%20of%20Die%20Cast%20Magnesium%20Alloy%20AM60&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Sharifi,%20P.&rft.date=2016-10-01&rft.volume=47&rft.issue=10&rft.spage=5159&rft.epage=5168&rft.pages=5159-5168&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-016-3698-x&rft_dat=%3Cproquest_cross%3E1835577546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814853007&rft_id=info:pmid/&rfr_iscdi=true |