Smooth PARAFAC Decomposition for Tensor Completion
In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2016-10, Vol.64 (20), p.5423-5436 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5436 |
---|---|
container_issue | 20 |
container_start_page | 5423 |
container_title | IEEE transactions on signal processing |
container_volume | 64 |
creator | Yokota, Tatsuya Qibin Zhao Cichocki, Andrzej |
description | In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods. |
doi_str_mv | 10.1109/TSP.2016.2586759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835577522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7502115</ieee_id><sourcerecordid>4160375161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-7cf91aae0b6722f9c59ea7680a934dc44bfa1e37d4951490e479bdc37aeceeb13</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO_uRzR5DtCoULLaCt2WznWBKkq3Z9OC_d0vFg6d3GJ53GB5CroHOAKi-X6-WM0YhmzGZZ0rqEzIBLSClQmWncaaSpzJXH-fkIoQtpSCEziaErTrvx89kWbwV86JMHtD5budDMza-T2o_JGvsQ4wyrls8bC_JWW3bgFe_OSXv88d1-ZwuXp9eymKROsn4mCpXa7AWaZUpxmrtpEarspxazcXGCVHVFpCrjdAShKYolK42jiuLDrECPiV3x7u7wX_tMYyma4LDtrU9-n0wkHMplZKMRfT2H7r1-6GP30UKBBOZ4DJS9Ei5wYcwYG12Q9PZ4dsANQeJJko0B4nmV2Ks3BwrDSL-4UpSBiD5D-8Ha_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814246435</pqid></control><display><type>article</type><title>Smooth PARAFAC Decomposition for Tensor Completion</title><source>IEEE Electronic Library (IEL)</source><creator>Yokota, Tatsuya ; Qibin Zhao ; Cichocki, Andrzej</creator><creatorcontrib>Yokota, Tatsuya ; Qibin Zhao ; Cichocki, Andrzej</creatorcontrib><description>In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2586759</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation ; Color ; CP model ; Decomposition ; Image color analysis ; Interpolation ; low-rank tensor approximation ; Mathematical analysis ; Matrix decomposition ; Minimization ; PARAFAC model ; quadratic variation ; Smoothness ; Strategy ; Tensile stress ; Tensor completion for images ; Tensors ; total variation (TV) ; Visualization</subject><ispartof>IEEE transactions on signal processing, 2016-10, Vol.64 (20), p.5423-5436</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-7cf91aae0b6722f9c59ea7680a934dc44bfa1e37d4951490e479bdc37aeceeb13</citedby><cites>FETCH-LOGICAL-c523t-7cf91aae0b6722f9c59ea7680a934dc44bfa1e37d4951490e479bdc37aeceeb13</cites><orcidid>0000-0002-7368-2060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7502115$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids></links><search><creatorcontrib>Yokota, Tatsuya</creatorcontrib><creatorcontrib>Qibin Zhao</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><title>Smooth PARAFAC Decomposition for Tensor Completion</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Color</subject><subject>CP model</subject><subject>Decomposition</subject><subject>Image color analysis</subject><subject>Interpolation</subject><subject>low-rank tensor approximation</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Minimization</subject><subject>PARAFAC model</subject><subject>quadratic variation</subject><subject>Smoothness</subject><subject>Strategy</subject><subject>Tensile stress</subject><subject>Tensor completion for images</subject><subject>Tensors</subject><subject>total variation (TV)</subject><subject>Visualization</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO_uRzR5DtCoULLaCt2WznWBKkq3Z9OC_d0vFg6d3GJ53GB5CroHOAKi-X6-WM0YhmzGZZ0rqEzIBLSClQmWncaaSpzJXH-fkIoQtpSCEziaErTrvx89kWbwV86JMHtD5budDMza-T2o_JGvsQ4wyrls8bC_JWW3bgFe_OSXv88d1-ZwuXp9eymKROsn4mCpXa7AWaZUpxmrtpEarspxazcXGCVHVFpCrjdAShKYolK42jiuLDrECPiV3x7u7wX_tMYyma4LDtrU9-n0wkHMplZKMRfT2H7r1-6GP30UKBBOZ4DJS9Ei5wYcwYG12Q9PZ4dsANQeJJko0B4nmV2Ks3BwrDSL-4UpSBiD5D-8Ha_c</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Yokota, Tatsuya</creator><creator>Qibin Zhao</creator><creator>Cichocki, Andrzej</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-7368-2060</orcidid></search><sort><creationdate>20161015</creationdate><title>Smooth PARAFAC Decomposition for Tensor Completion</title><author>Yokota, Tatsuya ; Qibin Zhao ; Cichocki, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-7cf91aae0b6722f9c59ea7680a934dc44bfa1e37d4951490e479bdc37aeceeb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Color</topic><topic>CP model</topic><topic>Decomposition</topic><topic>Image color analysis</topic><topic>Interpolation</topic><topic>low-rank tensor approximation</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Minimization</topic><topic>PARAFAC model</topic><topic>quadratic variation</topic><topic>Smoothness</topic><topic>Strategy</topic><topic>Tensile stress</topic><topic>Tensor completion for images</topic><topic>Tensors</topic><topic>total variation (TV)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokota, Tatsuya</creatorcontrib><creatorcontrib>Qibin Zhao</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokota, Tatsuya</au><au>Qibin Zhao</au><au>Cichocki, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth PARAFAC Decomposition for Tensor Completion</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-10-15</date><risdate>2016</risdate><volume>64</volume><issue>20</issue><spage>5423</spage><epage>5436</epage><pages>5423-5436</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2586759</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7368-2060</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2016-10, Vol.64 (20), p.5423-5436 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835577522 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation Color CP model Decomposition Image color analysis Interpolation low-rank tensor approximation Mathematical analysis Matrix decomposition Minimization PARAFAC model quadratic variation Smoothness Strategy Tensile stress Tensor completion for images Tensors total variation (TV) Visualization |
title | Smooth PARAFAC Decomposition for Tensor Completion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20PARAFAC%20Decomposition%20for%20Tensor%20Completion&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yokota,%20Tatsuya&rft.date=2016-10-15&rft.volume=64&rft.issue=20&rft.spage=5423&rft.epage=5436&rft.pages=5423-5436&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2586759&rft_dat=%3Cproquest_cross%3E4160375161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814246435&rft_id=info:pmid/&rft_ieee_id=7502115&rfr_iscdi=true |