Smooth PARAFAC Decomposition for Tensor Completion

In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2016-10, Vol.64 (20), p.5423-5436
Hauptverfasser: Yokota, Tatsuya, Qibin Zhao, Cichocki, Andrzej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5436
container_issue 20
container_start_page 5423
container_title IEEE transactions on signal processing
container_volume 64
creator Yokota, Tatsuya
Qibin Zhao
Cichocki, Andrzej
description In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods.
doi_str_mv 10.1109/TSP.2016.2586759
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835577522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7502115</ieee_id><sourcerecordid>4160375161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-7cf91aae0b6722f9c59ea7680a934dc44bfa1e37d4951490e479bdc37aeceeb13</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO_uRzR5DtCoULLaCt2WznWBKkq3Z9OC_d0vFg6d3GJ53GB5CroHOAKi-X6-WM0YhmzGZZ0rqEzIBLSClQmWncaaSpzJXH-fkIoQtpSCEziaErTrvx89kWbwV86JMHtD5budDMza-T2o_JGvsQ4wyrls8bC_JWW3bgFe_OSXv88d1-ZwuXp9eymKROsn4mCpXa7AWaZUpxmrtpEarspxazcXGCVHVFpCrjdAShKYolK42jiuLDrECPiV3x7u7wX_tMYyma4LDtrU9-n0wkHMplZKMRfT2H7r1-6GP30UKBBOZ4DJS9Ei5wYcwYG12Q9PZ4dsANQeJJko0B4nmV2Ks3BwrDSL-4UpSBiD5D-8Ha_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814246435</pqid></control><display><type>article</type><title>Smooth PARAFAC Decomposition for Tensor Completion</title><source>IEEE Electronic Library (IEL)</source><creator>Yokota, Tatsuya ; Qibin Zhao ; Cichocki, Andrzej</creator><creatorcontrib>Yokota, Tatsuya ; Qibin Zhao ; Cichocki, Andrzej</creatorcontrib><description>In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2586759</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation ; Color ; CP model ; Decomposition ; Image color analysis ; Interpolation ; low-rank tensor approximation ; Mathematical analysis ; Matrix decomposition ; Minimization ; PARAFAC model ; quadratic variation ; Smoothness ; Strategy ; Tensile stress ; Tensor completion for images ; Tensors ; total variation (TV) ; Visualization</subject><ispartof>IEEE transactions on signal processing, 2016-10, Vol.64 (20), p.5423-5436</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-7cf91aae0b6722f9c59ea7680a934dc44bfa1e37d4951490e479bdc37aeceeb13</citedby><cites>FETCH-LOGICAL-c523t-7cf91aae0b6722f9c59ea7680a934dc44bfa1e37d4951490e479bdc37aeceeb13</cites><orcidid>0000-0002-7368-2060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7502115$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids></links><search><creatorcontrib>Yokota, Tatsuya</creatorcontrib><creatorcontrib>Qibin Zhao</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><title>Smooth PARAFAC Decomposition for Tensor Completion</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Color</subject><subject>CP model</subject><subject>Decomposition</subject><subject>Image color analysis</subject><subject>Interpolation</subject><subject>low-rank tensor approximation</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Minimization</subject><subject>PARAFAC model</subject><subject>quadratic variation</subject><subject>Smoothness</subject><subject>Strategy</subject><subject>Tensile stress</subject><subject>Tensor completion for images</subject><subject>Tensors</subject><subject>total variation (TV)</subject><subject>Visualization</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-pO_uRzR5DtCoULLaCt2WznWBKkq3Z9OC_d0vFg6d3GJ53GB5CroHOAKi-X6-WM0YhmzGZZ0rqEzIBLSClQmWncaaSpzJXH-fkIoQtpSCEziaErTrvx89kWbwV86JMHtD5budDMza-T2o_JGvsQ4wyrls8bC_JWW3bgFe_OSXv88d1-ZwuXp9eymKROsn4mCpXa7AWaZUpxmrtpEarspxazcXGCVHVFpCrjdAShKYolK42jiuLDrECPiV3x7u7wX_tMYyma4LDtrU9-n0wkHMplZKMRfT2H7r1-6GP30UKBBOZ4DJS9Ei5wYcwYG12Q9PZ4dsANQeJJko0B4nmV2Ks3BwrDSL-4UpSBiD5D-8Ha_c</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Yokota, Tatsuya</creator><creator>Qibin Zhao</creator><creator>Cichocki, Andrzej</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-7368-2060</orcidid></search><sort><creationdate>20161015</creationdate><title>Smooth PARAFAC Decomposition for Tensor Completion</title><author>Yokota, Tatsuya ; Qibin Zhao ; Cichocki, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-7cf91aae0b6722f9c59ea7680a934dc44bfa1e37d4951490e479bdc37aeceeb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Color</topic><topic>CP model</topic><topic>Decomposition</topic><topic>Image color analysis</topic><topic>Interpolation</topic><topic>low-rank tensor approximation</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Minimization</topic><topic>PARAFAC model</topic><topic>quadratic variation</topic><topic>Smoothness</topic><topic>Strategy</topic><topic>Tensile stress</topic><topic>Tensor completion for images</topic><topic>Tensors</topic><topic>total variation (TV)</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokota, Tatsuya</creatorcontrib><creatorcontrib>Qibin Zhao</creatorcontrib><creatorcontrib>Cichocki, Andrzej</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokota, Tatsuya</au><au>Qibin Zhao</au><au>Cichocki, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth PARAFAC Decomposition for Tensor Completion</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2016-10-15</date><risdate>2016</risdate><volume>64</volume><issue>20</issue><spage>5423</spage><epage>5436</epage><pages>5423-5436</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>In recent years, low-rank based tensor completion, which is a higher order extension of matrix completion, has received considerable attention. However, the low-rank assumption is not sufficient for the recovery of visual data, such as color and 3D images, when the ratio of missing data is extremely high. In this paper, we consider "smoothness" constraints as well as low-rank approximations and propose an efficient algorithm for performing tensor completion that is particularly powerful regarding visual data. The proposed method admits significant advantages, owing to the integration of smooth PARAFAC decomposition for incomplete tensors and the efficient selection of models in order to minimize the tensor rank. Thus, our proposed method is termed as "smooth PARAFAC tensor completion (SPC)." In order to impose the smoothness constraints, we employ two strategies, total variation (SPC-TV) and quadratic variation (SPC-QV), and invoke the corresponding algorithms for model learning. Extensive experimental evaluations on both synthetic and real-world visual data illustrate the significant improvements of our method, in terms of both prediction performance and efficiency, compared with many state-of-the-art tensor completion methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2016.2586759</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7368-2060</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2016-10, Vol.64 (20), p.5423-5436
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_1835577522
source IEEE Electronic Library (IEL)
subjects Algorithms
Approximation
Color
CP model
Decomposition
Image color analysis
Interpolation
low-rank tensor approximation
Mathematical analysis
Matrix decomposition
Minimization
PARAFAC model
quadratic variation
Smoothness
Strategy
Tensile stress
Tensor completion for images
Tensors
total variation (TV)
Visualization
title Smooth PARAFAC Decomposition for Tensor Completion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20PARAFAC%20Decomposition%20for%20Tensor%20Completion&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yokota,%20Tatsuya&rft.date=2016-10-15&rft.volume=64&rft.issue=20&rft.spage=5423&rft.epage=5436&rft.pages=5423-5436&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2586759&rft_dat=%3Cproquest_cross%3E4160375161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814246435&rft_id=info:pmid/&rft_ieee_id=7502115&rfr_iscdi=true