Splines in the Space of Shells
Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2016-08, Vol.35 (5), p.111-120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | 5 |
container_start_page | 111 |
container_title | Computer graphics forum |
container_volume | 35 |
creator | Heeren, Behrend Rumpf, Martin Schröder, Peter Wardetzky, Max Wirth, Benedikt |
description | Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time‐discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency. |
doi_str_mv | 10.1111/cgf.12968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835574710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835574710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4388-8280220a1b92a38ac2a54cc2a7d590b0c2c78e159d2b2d54bfdd438f18b674bf3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8AdQJBYY0tqOHdsjqmgBQRlaBJvlOA5NSZNgt4L-ew4CDEjccB_S857uXoSOCR4QiKF9LgaEqlTuoB5hqYhlytUu6mECvcCc76ODEJYYYyZS3kMns7Yqaxeiso7WCxfNWmNd1BTRbOGqKhyivcJUwR191z56GF_OR1fx7f3kenRxG1uWSBlLKjGl2JBMUZNIY6nhzEIWOVc4w5ZaIR3hKqcZzTnLijwHYUFklgqYkj466_a2vnnduLDWqzJYuMDUrtkETWTCuWCCYEBP_6DLZuNruA4oAj8zghVQ5x1lfROCd4VufbkyfqsJ1p9OaXBKfzkF7LBj38rKbf8H9Wgy_lHEnaIMa_f-qzD-RaciEVw_TidaqDvKn-Y3epp8AF2ZdbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811464109</pqid></control><display><type>article</type><title>Splines in the Space of Shells</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Heeren, Behrend ; Rumpf, Martin ; Schröder, Peter ; Wardetzky, Max ; Wirth, Benedikt</creator><creatorcontrib>Heeren, Behrend ; Rumpf, Martin ; Schröder, Peter ; Wardetzky, Max ; Wirth, Benedikt</creatorcontrib><description>Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time‐discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12968</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acceleration ; Analysis ; Categories and Subject Descriptors (according to ACM CCS) ; Computational efficiency ; Data points ; Derivatives ; Distortion ; Euclidean geometry ; Euclidean space ; I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation ; Image processing systems ; Interpolation ; Splines ; Studies ; Topological manifolds</subject><ispartof>Computer graphics forum, 2016-08, Vol.35 (5), p.111-120</ispartof><rights>2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.</rights><rights>2016 The Eurographics Association and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4388-8280220a1b92a38ac2a54cc2a7d590b0c2c78e159d2b2d54bfdd438f18b674bf3</citedby><cites>FETCH-LOGICAL-c4388-8280220a1b92a38ac2a54cc2a7d590b0c2c78e159d2b2d54bfdd438f18b674bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12968$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12968$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Heeren, Behrend</creatorcontrib><creatorcontrib>Rumpf, Martin</creatorcontrib><creatorcontrib>Schröder, Peter</creatorcontrib><creatorcontrib>Wardetzky, Max</creatorcontrib><creatorcontrib>Wirth, Benedikt</creatorcontrib><title>Splines in the Space of Shells</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time‐discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency.</description><subject>Acceleration</subject><subject>Analysis</subject><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Computational efficiency</subject><subject>Data points</subject><subject>Derivatives</subject><subject>Distortion</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation</subject><subject>Image processing systems</subject><subject>Interpolation</subject><subject>Splines</subject><subject>Studies</subject><subject>Topological manifolds</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8AdQJBYY0tqOHdsjqmgBQRlaBJvlOA5NSZNgt4L-ew4CDEjccB_S857uXoSOCR4QiKF9LgaEqlTuoB5hqYhlytUu6mECvcCc76ODEJYYYyZS3kMns7Yqaxeiso7WCxfNWmNd1BTRbOGqKhyivcJUwR191z56GF_OR1fx7f3kenRxG1uWSBlLKjGl2JBMUZNIY6nhzEIWOVc4w5ZaIR3hKqcZzTnLijwHYUFklgqYkj466_a2vnnduLDWqzJYuMDUrtkETWTCuWCCYEBP_6DLZuNruA4oAj8zghVQ5x1lfROCd4VufbkyfqsJ1p9OaXBKfzkF7LBj38rKbf8H9Wgy_lHEnaIMa_f-qzD-RaciEVw_TidaqDvKn-Y3epp8AF2ZdbY</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Heeren, Behrend</creator><creator>Rumpf, Martin</creator><creator>Schröder, Peter</creator><creator>Wardetzky, Max</creator><creator>Wirth, Benedikt</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201608</creationdate><title>Splines in the Space of Shells</title><author>Heeren, Behrend ; Rumpf, Martin ; Schröder, Peter ; Wardetzky, Max ; Wirth, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4388-8280220a1b92a38ac2a54cc2a7d590b0c2c78e159d2b2d54bfdd438f18b674bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acceleration</topic><topic>Analysis</topic><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Computational efficiency</topic><topic>Data points</topic><topic>Derivatives</topic><topic>Distortion</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation</topic><topic>Image processing systems</topic><topic>Interpolation</topic><topic>Splines</topic><topic>Studies</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heeren, Behrend</creatorcontrib><creatorcontrib>Rumpf, Martin</creatorcontrib><creatorcontrib>Schröder, Peter</creatorcontrib><creatorcontrib>Wardetzky, Max</creatorcontrib><creatorcontrib>Wirth, Benedikt</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heeren, Behrend</au><au>Rumpf, Martin</au><au>Schröder, Peter</au><au>Wardetzky, Max</au><au>Wirth, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Splines in the Space of Shells</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2016-08</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>111</spage><epage>120</epage><pages>111-120</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time‐discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12968</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2016-08, Vol.35 (5), p.111-120 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835574710 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Acceleration Analysis Categories and Subject Descriptors (according to ACM CCS) Computational efficiency Data points Derivatives Distortion Euclidean geometry Euclidean space I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation Image processing systems Interpolation Splines Studies Topological manifolds |
title | Splines in the Space of Shells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Splines%20in%20the%20Space%20of%20Shells&rft.jtitle=Computer%20graphics%20forum&rft.au=Heeren,%20Behrend&rft.date=2016-08&rft.volume=35&rft.issue=5&rft.spage=111&rft.epage=120&rft.pages=111-120&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12968&rft_dat=%3Cproquest_cross%3E1835574710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811464109&rft_id=info:pmid/&rfr_iscdi=true |