Splines in the Space of Shells

Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2016-08, Vol.35 (5), p.111-120
Hauptverfasser: Heeren, Behrend, Rumpf, Martin, Schröder, Peter, Wardetzky, Max, Wirth, Benedikt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue 5
container_start_page 111
container_title Computer graphics forum
container_volume 35
creator Heeren, Behrend
Rumpf, Martin
Schröder, Peter
Wardetzky, Max
Wirth, Benedikt
description Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time‐discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency.
doi_str_mv 10.1111/cgf.12968
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835574710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835574710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4388-8280220a1b92a38ac2a54cc2a7d590b0c2c78e159d2b2d54bfdd438f18b674bf3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8AdQJBYY0tqOHdsjqmgBQRlaBJvlOA5NSZNgt4L-ew4CDEjccB_S857uXoSOCR4QiKF9LgaEqlTuoB5hqYhlytUu6mECvcCc76ODEJYYYyZS3kMns7Yqaxeiso7WCxfNWmNd1BTRbOGqKhyivcJUwR191z56GF_OR1fx7f3kenRxG1uWSBlLKjGl2JBMUZNIY6nhzEIWOVc4w5ZaIR3hKqcZzTnLijwHYUFklgqYkj466_a2vnnduLDWqzJYuMDUrtkETWTCuWCCYEBP_6DLZuNruA4oAj8zghVQ5x1lfROCd4VufbkyfqsJ1p9OaXBKfzkF7LBj38rKbf8H9Wgy_lHEnaIMa_f-qzD-RaciEVw_TidaqDvKn-Y3epp8AF2ZdbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811464109</pqid></control><display><type>article</type><title>Splines in the Space of Shells</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Heeren, Behrend ; Rumpf, Martin ; Schröder, Peter ; Wardetzky, Max ; Wirth, Benedikt</creator><creatorcontrib>Heeren, Behrend ; Rumpf, Martin ; Schröder, Peter ; Wardetzky, Max ; Wirth, Benedikt</creatorcontrib><description>Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time‐discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.12968</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acceleration ; Analysis ; Categories and Subject Descriptors (according to ACM CCS) ; Computational efficiency ; Data points ; Derivatives ; Distortion ; Euclidean geometry ; Euclidean space ; I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation ; Image processing systems ; Interpolation ; Splines ; Studies ; Topological manifolds</subject><ispartof>Computer graphics forum, 2016-08, Vol.35 (5), p.111-120</ispartof><rights>2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley &amp; Sons Ltd. Published by John Wiley &amp; Sons Ltd.</rights><rights>2016 The Eurographics Association and John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4388-8280220a1b92a38ac2a54cc2a7d590b0c2c78e159d2b2d54bfdd438f18b674bf3</citedby><cites>FETCH-LOGICAL-c4388-8280220a1b92a38ac2a54cc2a7d590b0c2c78e159d2b2d54bfdd438f18b674bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.12968$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.12968$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Heeren, Behrend</creatorcontrib><creatorcontrib>Rumpf, Martin</creatorcontrib><creatorcontrib>Schröder, Peter</creatorcontrib><creatorcontrib>Wardetzky, Max</creatorcontrib><creatorcontrib>Wirth, Benedikt</creatorcontrib><title>Splines in the Space of Shells</title><title>Computer graphics forum</title><addtitle>Computer Graphics Forum</addtitle><description>Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time‐discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency.</description><subject>Acceleration</subject><subject>Analysis</subject><subject>Categories and Subject Descriptors (according to ACM CCS)</subject><subject>Computational efficiency</subject><subject>Data points</subject><subject>Derivatives</subject><subject>Distortion</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation</subject><subject>Image processing systems</subject><subject>Interpolation</subject><subject>Splines</subject><subject>Studies</subject><subject>Topological manifolds</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8AdQJBYY0tqOHdsjqmgBQRlaBJvlOA5NSZNgt4L-ew4CDEjccB_S857uXoSOCR4QiKF9LgaEqlTuoB5hqYhlytUu6mECvcCc76ODEJYYYyZS3kMns7Yqaxeiso7WCxfNWmNd1BTRbOGqKhyivcJUwR191z56GF_OR1fx7f3kenRxG1uWSBlLKjGl2JBMUZNIY6nhzEIWOVc4w5ZaIR3hKqcZzTnLijwHYUFklgqYkj466_a2vnnduLDWqzJYuMDUrtkETWTCuWCCYEBP_6DLZuNruA4oAj8zghVQ5x1lfROCd4VufbkyfqsJ1p9OaXBKfzkF7LBj38rKbf8H9Wgy_lHEnaIMa_f-qzD-RaciEVw_TidaqDvKn-Y3epp8AF2ZdbY</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Heeren, Behrend</creator><creator>Rumpf, Martin</creator><creator>Schröder, Peter</creator><creator>Wardetzky, Max</creator><creator>Wirth, Benedikt</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201608</creationdate><title>Splines in the Space of Shells</title><author>Heeren, Behrend ; Rumpf, Martin ; Schröder, Peter ; Wardetzky, Max ; Wirth, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4388-8280220a1b92a38ac2a54cc2a7d590b0c2c78e159d2b2d54bfdd438f18b674bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acceleration</topic><topic>Analysis</topic><topic>Categories and Subject Descriptors (according to ACM CCS)</topic><topic>Computational efficiency</topic><topic>Data points</topic><topic>Derivatives</topic><topic>Distortion</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation</topic><topic>Image processing systems</topic><topic>Interpolation</topic><topic>Splines</topic><topic>Studies</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heeren, Behrend</creatorcontrib><creatorcontrib>Rumpf, Martin</creatorcontrib><creatorcontrib>Schröder, Peter</creatorcontrib><creatorcontrib>Wardetzky, Max</creatorcontrib><creatorcontrib>Wirth, Benedikt</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heeren, Behrend</au><au>Rumpf, Martin</au><au>Schröder, Peter</au><au>Wardetzky, Max</au><au>Wirth, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Splines in the Space of Shells</atitle><jtitle>Computer graphics forum</jtitle><addtitle>Computer Graphics Forum</addtitle><date>2016-08</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>111</spage><epage>120</epage><pages>111-120</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Cubic splines in Euclidean space minimize the mean squared acceleration among all curves interpolating a given set of data points. We extend this observation to the Riemannian manifold of discrete shells in which the associated metric measures both bending and membrane distortion. Our generalization replaces the acceleration with the covariant derivative of the velocity. We introduce an effective time‐discretization for this novel paradigm for navigating shell space. Further transferring this concept to the space of triangular surface descriptors—edge lengths, dihedral angles, and triangle areas—results in a simplified interpolation method with high computational efficiency.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.12968</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2016-08, Vol.35 (5), p.111-120
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_1835574710
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Acceleration
Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computational efficiency
Data points
Derivatives
Distortion
Euclidean geometry
Euclidean space
I.3.3 [Computer Graphics]: Picture/Image Generation-Line and curve generation
Image processing systems
Interpolation
Splines
Studies
Topological manifolds
title Splines in the Space of Shells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Splines%20in%20the%20Space%20of%20Shells&rft.jtitle=Computer%20graphics%20forum&rft.au=Heeren,%20Behrend&rft.date=2016-08&rft.volume=35&rft.issue=5&rft.spage=111&rft.epage=120&rft.pages=111-120&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.12968&rft_dat=%3Cproquest_cross%3E1835574710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811464109&rft_id=info:pmid/&rfr_iscdi=true