Ultra-wetting graphene-based PES ultrafiltration membrane – A novel approach for successful oil-water separation
Oil pollution in water and separation of oil from water are receiving much attention in recent years due to the growing environmental concerns. Membrane technology is one of the emerging solutions for oil-water separation. However, there is a limitation in using polymeric membrane for oil water sepa...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2016-10, Vol.103, p.311-318 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oil pollution in water and separation of oil from water are receiving much attention in recent years due to the growing environmental concerns. Membrane technology is one of the emerging solutions for oil-water separation. However, there is a limitation in using polymeric membrane for oil water separation due to its surface properties (wetting behaviour), thermal and mechanical properties. Here, we have shown a simple method to increase the hydrophilicity of the polyethersulfone (PES) hollow fibre ultrafiltration (UF) membrane by using carboxyl, hydroxyl and amine modified graphene attached poly acrylonitrile-co-maleimide (G-PANCMI). The prepared membranes were characterized for its morphology, water and oil contact angle, liquid entry pressure of oil (LEPoil), water permeability and finally subjected to a continuous 8 h filtration test of oil emulsion in water. The experimental data indicates that the G-PANCMI play an important role in enhancing the hydrophilicity, permeability and selectivity of the PES membrane. The water contact angle (CAw) of the PES membrane is reduced from 63.7 ± 3.8° to 22.6 ± 2.5° which is 64.5% reduction while, the oil contact angle was increased from 43.6 ± 3.5° to 112.5 ± 3.2° which is 158% higher compared to that of the PES membrane. Similarly, the LEPoil increased 350% from 50 ± 10 kPa of the control PES membrane to 175 ± 25 kPa of PES-G-PANCMI membrane. More importantly, the water permeability increased by 43% with >99% selectivity. Based on our findings we believe that the development of PES-G-PANCMI membrane will open up a solution for successful oil-water separation.
[Display omitted]
•A new highly hydrophilic additive GPANCMI/Ultra-wetting graphene was developed.•Ultra-wetting graphene additive was used to fabricate PES hollow fibre membranes.•The new copolymer additive increases the hydrophilicity of the membrane by 64.5%.•The addition of 5% ultra-wetting graphene increase the LEPoil of the PES membrane by 350%.•The permeability of the membrane was increased by 43% with the new ultra-wetting graphene. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2016.07.042 |