Time-domain reflectometry probing systems for the monitoring of hydrological processes in the unsaturated zone

Precise measurements of the downward movement of precipitation through the unsaturated zone, as well as return flow of moisture to the atmosphere via evaporation, have always been challenging in regard to in-situ monitoring techniques. This study investigates the profile of volumetric water-content...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogeology journal 2016-08, Vol.24 (5), p.1297-1309
Hauptverfasser: Kallioras, A., Khan, A., Piepenbrink, M., Pfletschinger, H., Koniger, F., Dietrich, P., Schuth, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1309
container_issue 5
container_start_page 1297
container_title Hydrogeology journal
container_volume 24
creator Kallioras, A.
Khan, A.
Piepenbrink, M.
Pfletschinger, H.
Koniger, F.
Dietrich, P.
Schuth, C.
description Precise measurements of the downward movement of precipitation through the unsaturated zone, as well as return flow of moisture to the atmosphere via evaporation, have always been challenging in regard to in-situ monitoring techniques. This study investigates the profile of volumetric water-content fluctuations within the unsaturated zone through a combination of field techniques, including in-situ measurements of the volumetric porewater content at different depths using specially designed time-domain reflectometry (TDR) probes. The probes are installed through direct-push vibro-coring methods, at significant depths within the unsaturated zone, providing continuous readings of the soil-moisture content throughout the unsaturated column. The measured waveform is analyzed by using the inverse modeling approach resulting in an apparent relative dielectric permittivity profile of the surrounding medium along the TDR probe length. The approach sufficiently analyzes the mechanisms of water fluxes through significant depths within the unsaturated zone, which in turn can be used to quantify groundwater recharge at areas where the unsaturated zone hydrology plays a key role in the recharge of the underlying aquifers (such as arid and hydrologically sensitive areas). The approach was applied at an experimental field site in the Upper Rhine Valley, Germany.
doi_str_mv 10.1007/s10040-016-1421-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835572459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808673173</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-43186fe8e57a91b95eb29cf3592140a30fe372b518d4d82d4f3b21e61ba2a8a83</originalsourceid><addsrcrecordid>eNqNkUtLxTAQhYso-PwB7gJu3FQzebTpUsQXCG50HdJ2qpW2uWbSxb2_3tTrQgTBTRKS7xwm52TZKfAL4Ly8pLQqnnMoclAC8s1OdgBK6nSjy92vM-QCSrWfHRK980RDKQ-y6bkfMW_96PqJBewGbKIfMYY1WwVf99MrozVFHIl1PrD4hmz0Ux99WJ58x97WbfCDf-0bNyySBomQWHJb2HkiF-fgIrZs4yc8zvY6NxCefO9H2cvtzfP1ff74dPdwffWYO8V1zNOwpujQoC5dBXWlsRZV00ldCVDcSd6hLEWtwbSqNaJVnawFYAG1E844I4-y861vmuhjRop27KnBYXAT-pksGKl1KZSu_oFyU5QypZXQs1_ou5_DlD6SKAAojKx4omBLNcETpUztKvSjC2sL3C5l2W1ZNpVll7LsJmnEVkOrJVgMP5z_FH0Ck1SYoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811168390</pqid></control><display><type>article</type><title>Time-domain reflectometry probing systems for the monitoring of hydrological processes in the unsaturated zone</title><source>Springer Nature - Complete Springer Journals</source><creator>Kallioras, A. ; Khan, A. ; Piepenbrink, M. ; Pfletschinger, H. ; Koniger, F. ; Dietrich, P. ; Schuth, C.</creator><creatorcontrib>Kallioras, A. ; Khan, A. ; Piepenbrink, M. ; Pfletschinger, H. ; Koniger, F. ; Dietrich, P. ; Schuth, C.</creatorcontrib><description>Precise measurements of the downward movement of precipitation through the unsaturated zone, as well as return flow of moisture to the atmosphere via evaporation, have always been challenging in regard to in-situ monitoring techniques. This study investigates the profile of volumetric water-content fluctuations within the unsaturated zone through a combination of field techniques, including in-situ measurements of the volumetric porewater content at different depths using specially designed time-domain reflectometry (TDR) probes. The probes are installed through direct-push vibro-coring methods, at significant depths within the unsaturated zone, providing continuous readings of the soil-moisture content throughout the unsaturated column. The measured waveform is analyzed by using the inverse modeling approach resulting in an apparent relative dielectric permittivity profile of the surrounding medium along the TDR probe length. The approach sufficiently analyzes the mechanisms of water fluxes through significant depths within the unsaturated zone, which in turn can be used to quantify groundwater recharge at areas where the unsaturated zone hydrology plays a key role in the recharge of the underlying aquifers (such as arid and hydrologically sensitive areas). The approach was applied at an experimental field site in the Upper Rhine Valley, Germany.</description><identifier>ISSN: 1431-2174</identifier><identifier>EISSN: 1435-0157</identifier><identifier>DOI: 10.1007/s10040-016-1421-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aeration zone ; Aquatic Pollution ; Aquifers ; Earth and Environmental Science ; Earth Sciences ; Environmental monitoring ; Evaporation ; Geology ; Geophysics/Geodesy ; Groundwater ; Groundwater recharge ; Hydrogeology ; Hydrology ; Hydrology/Water Resources ; Moisture content ; Monitoring ; Pore water ; Probes ; Recharging ; Reflectometry ; Return flow ; Studies ; Time domain ; Valleys ; Waste Water Technology ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution ; Waveforms</subject><ispartof>Hydrogeology journal, 2016-08, Vol.24 (5), p.1297-1309</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-43186fe8e57a91b95eb29cf3592140a30fe372b518d4d82d4f3b21e61ba2a8a83</citedby><cites>FETCH-LOGICAL-a405t-43186fe8e57a91b95eb29cf3592140a30fe372b518d4d82d4f3b21e61ba2a8a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10040-016-1421-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10040-016-1421-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kallioras, A.</creatorcontrib><creatorcontrib>Khan, A.</creatorcontrib><creatorcontrib>Piepenbrink, M.</creatorcontrib><creatorcontrib>Pfletschinger, H.</creatorcontrib><creatorcontrib>Koniger, F.</creatorcontrib><creatorcontrib>Dietrich, P.</creatorcontrib><creatorcontrib>Schuth, C.</creatorcontrib><title>Time-domain reflectometry probing systems for the monitoring of hydrological processes in the unsaturated zone</title><title>Hydrogeology journal</title><addtitle>Hydrogeol J</addtitle><description>Precise measurements of the downward movement of precipitation through the unsaturated zone, as well as return flow of moisture to the atmosphere via evaporation, have always been challenging in regard to in-situ monitoring techniques. This study investigates the profile of volumetric water-content fluctuations within the unsaturated zone through a combination of field techniques, including in-situ measurements of the volumetric porewater content at different depths using specially designed time-domain reflectometry (TDR) probes. The probes are installed through direct-push vibro-coring methods, at significant depths within the unsaturated zone, providing continuous readings of the soil-moisture content throughout the unsaturated column. The measured waveform is analyzed by using the inverse modeling approach resulting in an apparent relative dielectric permittivity profile of the surrounding medium along the TDR probe length. The approach sufficiently analyzes the mechanisms of water fluxes through significant depths within the unsaturated zone, which in turn can be used to quantify groundwater recharge at areas where the unsaturated zone hydrology plays a key role in the recharge of the underlying aquifers (such as arid and hydrologically sensitive areas). The approach was applied at an experimental field site in the Upper Rhine Valley, Germany.</description><subject>Aeration zone</subject><subject>Aquatic Pollution</subject><subject>Aquifers</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental monitoring</subject><subject>Evaporation</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Groundwater</subject><subject>Groundwater recharge</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Moisture content</subject><subject>Monitoring</subject><subject>Pore water</subject><subject>Probes</subject><subject>Recharging</subject><subject>Reflectometry</subject><subject>Return flow</subject><subject>Studies</subject><subject>Time domain</subject><subject>Valleys</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><subject>Waveforms</subject><issn>1431-2174</issn><issn>1435-0157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkUtLxTAQhYso-PwB7gJu3FQzebTpUsQXCG50HdJ2qpW2uWbSxb2_3tTrQgTBTRKS7xwm52TZKfAL4Ly8pLQqnnMoclAC8s1OdgBK6nSjy92vM-QCSrWfHRK980RDKQ-y6bkfMW_96PqJBewGbKIfMYY1WwVf99MrozVFHIl1PrD4hmz0Ux99WJ58x97WbfCDf-0bNyySBomQWHJb2HkiF-fgIrZs4yc8zvY6NxCefO9H2cvtzfP1ff74dPdwffWYO8V1zNOwpujQoC5dBXWlsRZV00ldCVDcSd6hLEWtwbSqNaJVnawFYAG1E844I4-y861vmuhjRop27KnBYXAT-pksGKl1KZSu_oFyU5QypZXQs1_ou5_DlD6SKAAojKx4omBLNcETpUztKvSjC2sL3C5l2W1ZNpVll7LsJmnEVkOrJVgMP5z_FH0Ck1SYoA</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Kallioras, A.</creator><creator>Khan, A.</creator><creator>Piepenbrink, M.</creator><creator>Pfletschinger, H.</creator><creator>Koniger, F.</creator><creator>Dietrich, P.</creator><creator>Schuth, C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20160801</creationdate><title>Time-domain reflectometry probing systems for the monitoring of hydrological processes in the unsaturated zone</title><author>Kallioras, A. ; Khan, A. ; Piepenbrink, M. ; Pfletschinger, H. ; Koniger, F. ; Dietrich, P. ; Schuth, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-43186fe8e57a91b95eb29cf3592140a30fe372b518d4d82d4f3b21e61ba2a8a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aeration zone</topic><topic>Aquatic Pollution</topic><topic>Aquifers</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental monitoring</topic><topic>Evaporation</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Groundwater</topic><topic>Groundwater recharge</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Moisture content</topic><topic>Monitoring</topic><topic>Pore water</topic><topic>Probes</topic><topic>Recharging</topic><topic>Reflectometry</topic><topic>Return flow</topic><topic>Studies</topic><topic>Time domain</topic><topic>Valleys</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kallioras, A.</creatorcontrib><creatorcontrib>Khan, A.</creatorcontrib><creatorcontrib>Piepenbrink, M.</creatorcontrib><creatorcontrib>Pfletschinger, H.</creatorcontrib><creatorcontrib>Koniger, F.</creatorcontrib><creatorcontrib>Dietrich, P.</creatorcontrib><creatorcontrib>Schuth, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Hydrogeology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kallioras, A.</au><au>Khan, A.</au><au>Piepenbrink, M.</au><au>Pfletschinger, H.</au><au>Koniger, F.</au><au>Dietrich, P.</au><au>Schuth, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-domain reflectometry probing systems for the monitoring of hydrological processes in the unsaturated zone</atitle><jtitle>Hydrogeology journal</jtitle><stitle>Hydrogeol J</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>24</volume><issue>5</issue><spage>1297</spage><epage>1309</epage><pages>1297-1309</pages><issn>1431-2174</issn><eissn>1435-0157</eissn><abstract>Precise measurements of the downward movement of precipitation through the unsaturated zone, as well as return flow of moisture to the atmosphere via evaporation, have always been challenging in regard to in-situ monitoring techniques. This study investigates the profile of volumetric water-content fluctuations within the unsaturated zone through a combination of field techniques, including in-situ measurements of the volumetric porewater content at different depths using specially designed time-domain reflectometry (TDR) probes. The probes are installed through direct-push vibro-coring methods, at significant depths within the unsaturated zone, providing continuous readings of the soil-moisture content throughout the unsaturated column. The measured waveform is analyzed by using the inverse modeling approach resulting in an apparent relative dielectric permittivity profile of the surrounding medium along the TDR probe length. The approach sufficiently analyzes the mechanisms of water fluxes through significant depths within the unsaturated zone, which in turn can be used to quantify groundwater recharge at areas where the unsaturated zone hydrology plays a key role in the recharge of the underlying aquifers (such as arid and hydrologically sensitive areas). The approach was applied at an experimental field site in the Upper Rhine Valley, Germany.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10040-016-1421-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-2174
ispartof Hydrogeology journal, 2016-08, Vol.24 (5), p.1297-1309
issn 1431-2174
1435-0157
language eng
recordid cdi_proquest_miscellaneous_1835572459
source Springer Nature - Complete Springer Journals
subjects Aeration zone
Aquatic Pollution
Aquifers
Earth and Environmental Science
Earth Sciences
Environmental monitoring
Evaporation
Geology
Geophysics/Geodesy
Groundwater
Groundwater recharge
Hydrogeology
Hydrology
Hydrology/Water Resources
Moisture content
Monitoring
Pore water
Probes
Recharging
Reflectometry
Return flow
Studies
Time domain
Valleys
Waste Water Technology
Water Management
Water Pollution Control
Water Quality/Water Pollution
Waveforms
title Time-domain reflectometry probing systems for the monitoring of hydrological processes in the unsaturated zone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-domain%20reflectometry%20probing%20systems%20for%20the%20monitoring%20of%20hydrological%20processes%20in%20the%20unsaturated%20zone&rft.jtitle=Hydrogeology%20journal&rft.au=Kallioras,%20A.&rft.date=2016-08-01&rft.volume=24&rft.issue=5&rft.spage=1297&rft.epage=1309&rft.pages=1297-1309&rft.issn=1431-2174&rft.eissn=1435-0157&rft_id=info:doi/10.1007/s10040-016-1421-z&rft_dat=%3Cproquest_cross%3E1808673173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811168390&rft_id=info:pmid/&rfr_iscdi=true