Flat Helical Nanosieves

Compact and miniaturized devices with flexible functionalities are always highly demanded in optical integrated systems. Plasmonic nanosieve has been successfully harnessed as an ultrathin flat platform for complex manipulation of light, including holography, vortex generation, and nonlinear process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2016-08, Vol.26 (29), p.5255-5262
Hauptverfasser: Mei, Shengtao, Mehmood, Muhammad Qasim, Hussain, Sajid, Huang, Kun, Ling, Xiaohui, Siew, Shawn Yohanes, Liu, Hong, Teng, Jinghua, Danner, Aaron, Qiu, Cheng-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5262
container_issue 29
container_start_page 5255
container_title Advanced functional materials
container_volume 26
creator Mei, Shengtao
Mehmood, Muhammad Qasim
Hussain, Sajid
Huang, Kun
Ling, Xiaohui
Siew, Shawn Yohanes
Liu, Hong
Teng, Jinghua
Danner, Aaron
Qiu, Cheng-Wei
description Compact and miniaturized devices with flexible functionalities are always highly demanded in optical integrated systems. Plasmonic nanosieve has been successfully harnessed as an ultrathin flat platform for complex manipulation of light, including holography, vortex generation, and nonlinear processes. Compared with most of the reported single‐functional devices, multifunctional nanosieves might find more complex and novel applications across nanophotonics, optics, and nanotechnology. Here, a promising roadmap for nanosieve‐based helical devices is experimentally demonstrated, which achieves full manipulations of optical vortices, including its generation, hybridization, spatial multiplexing, focusing and nondiffraction propagation, etc., by controlling the geometric phase of spin light via over 121 thousands of spatially rotated nanosieves. Thanks to such spin‐conversion nanosieve helical elements, it is no longer necessary to employ the conventional two‐beam interferometric measurement to characterize optical vortices, while the interference can be realized natively without changing any parts of the current setup. The proposed strategy makes the far‐field manipulations of optical orbital angular momentum within an ultrathin interface viable and bridges singular optics and integrated optics. In addition, it enables more unique extensibility and flexibility in versatile optical elements than traditional phase‐accumulated helical optical devices. A nanosieve array is endowed with the abilities of full manipulations of electromagnetic waves. Its phase encoding is especially investigated in beam forming/steering, imaging, and many other significant applications. Based on the double‐ring nanosieves, a novel class of helical optical devices is proposed and demonstrated with a (almost) complete set of various designs for vortex generation, multiplexing, interaction, focusing, and interference.
doi_str_mv 10.1002/adfm.201601345
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835571449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835571449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4665-f27aaf124134106825cf69ea91a56b36b8a0e471f206f98b12b81e5d2af86def3</originalsourceid><addsrcrecordid>eNqFkD1PAkEQQDdGExFttaW0OdzZ7ysJeGCCaKHRbjN3zCanB4e3oPLvhZwhdlYzxXszyWPsEngfOBc3OA-LvuBgOEilj1gHDJhEcuGODzu8nrKzGN84B2ul6rCrrMJ1b0JVWWDVm-GyjiV9UjxnJwGrSBe_s8ues9un4SSZPozvhoNpUihjdBKERQwg1O4lcOOELoJJCVNAbXJpcoeclIUguAmpy0HkDkjPBQZn5hRkl123d1dN_bGhuPaLMhZUVbikehM9OKm1BaXSHdpv0aKpY2wo-FVTLrDZeuB-X8DvC_hDgZ2QtsJXWdH2H9oPRtn9Xzdp3TKu6fvgYvPujZVW-5fZ2OuRHYksHfpH-QM002wU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835571449</pqid></control><display><type>article</type><title>Flat Helical Nanosieves</title><source>Wiley Online Library</source><creator>Mei, Shengtao ; Mehmood, Muhammad Qasim ; Hussain, Sajid ; Huang, Kun ; Ling, Xiaohui ; Siew, Shawn Yohanes ; Liu, Hong ; Teng, Jinghua ; Danner, Aaron ; Qiu, Cheng-Wei</creator><creatorcontrib>Mei, Shengtao ; Mehmood, Muhammad Qasim ; Hussain, Sajid ; Huang, Kun ; Ling, Xiaohui ; Siew, Shawn Yohanes ; Liu, Hong ; Teng, Jinghua ; Danner, Aaron ; Qiu, Cheng-Wei</creatorcontrib><description>Compact and miniaturized devices with flexible functionalities are always highly demanded in optical integrated systems. Plasmonic nanosieve has been successfully harnessed as an ultrathin flat platform for complex manipulation of light, including holography, vortex generation, and nonlinear processes. Compared with most of the reported single‐functional devices, multifunctional nanosieves might find more complex and novel applications across nanophotonics, optics, and nanotechnology. Here, a promising roadmap for nanosieve‐based helical devices is experimentally demonstrated, which achieves full manipulations of optical vortices, including its generation, hybridization, spatial multiplexing, focusing and nondiffraction propagation, etc., by controlling the geometric phase of spin light via over 121 thousands of spatially rotated nanosieves. Thanks to such spin‐conversion nanosieve helical elements, it is no longer necessary to employ the conventional two‐beam interferometric measurement to characterize optical vortices, while the interference can be realized natively without changing any parts of the current setup. The proposed strategy makes the far‐field manipulations of optical orbital angular momentum within an ultrathin interface viable and bridges singular optics and integrated optics. In addition, it enables more unique extensibility and flexibility in versatile optical elements than traditional phase‐accumulated helical optical devices. A nanosieve array is endowed with the abilities of full manipulations of electromagnetic waves. Its phase encoding is especially investigated in beam forming/steering, imaging, and many other significant applications. Based on the double‐ring nanosieves, a novel class of helical optical devices is proposed and demonstrated with a (almost) complete set of various designs for vortex generation, multiplexing, interaction, focusing, and interference.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201601345</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Devices ; flat helical devices ; Flats ; Fluid flow ; Focusing ; Interference ; multifunctional ; Multiplexing ; nanosieves ; Nanostructure ; vortex ; Vortices</subject><ispartof>Advanced functional materials, 2016-08, Vol.26 (29), p.5255-5262</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4665-f27aaf124134106825cf69ea91a56b36b8a0e471f206f98b12b81e5d2af86def3</citedby><cites>FETCH-LOGICAL-c4665-f27aaf124134106825cf69ea91a56b36b8a0e471f206f98b12b81e5d2af86def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201601345$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201601345$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mei, Shengtao</creatorcontrib><creatorcontrib>Mehmood, Muhammad Qasim</creatorcontrib><creatorcontrib>Hussain, Sajid</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Ling, Xiaohui</creatorcontrib><creatorcontrib>Siew, Shawn Yohanes</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Teng, Jinghua</creatorcontrib><creatorcontrib>Danner, Aaron</creatorcontrib><creatorcontrib>Qiu, Cheng-Wei</creatorcontrib><title>Flat Helical Nanosieves</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Compact and miniaturized devices with flexible functionalities are always highly demanded in optical integrated systems. Plasmonic nanosieve has been successfully harnessed as an ultrathin flat platform for complex manipulation of light, including holography, vortex generation, and nonlinear processes. Compared with most of the reported single‐functional devices, multifunctional nanosieves might find more complex and novel applications across nanophotonics, optics, and nanotechnology. Here, a promising roadmap for nanosieve‐based helical devices is experimentally demonstrated, which achieves full manipulations of optical vortices, including its generation, hybridization, spatial multiplexing, focusing and nondiffraction propagation, etc., by controlling the geometric phase of spin light via over 121 thousands of spatially rotated nanosieves. Thanks to such spin‐conversion nanosieve helical elements, it is no longer necessary to employ the conventional two‐beam interferometric measurement to characterize optical vortices, while the interference can be realized natively without changing any parts of the current setup. The proposed strategy makes the far‐field manipulations of optical orbital angular momentum within an ultrathin interface viable and bridges singular optics and integrated optics. In addition, it enables more unique extensibility and flexibility in versatile optical elements than traditional phase‐accumulated helical optical devices. A nanosieve array is endowed with the abilities of full manipulations of electromagnetic waves. Its phase encoding is especially investigated in beam forming/steering, imaging, and many other significant applications. Based on the double‐ring nanosieves, a novel class of helical optical devices is proposed and demonstrated with a (almost) complete set of various designs for vortex generation, multiplexing, interaction, focusing, and interference.</description><subject>Devices</subject><subject>flat helical devices</subject><subject>Flats</subject><subject>Fluid flow</subject><subject>Focusing</subject><subject>Interference</subject><subject>multifunctional</subject><subject>Multiplexing</subject><subject>nanosieves</subject><subject>Nanostructure</subject><subject>vortex</subject><subject>Vortices</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PAkEQQDdGExFttaW0OdzZ7ysJeGCCaKHRbjN3zCanB4e3oPLvhZwhdlYzxXszyWPsEngfOBc3OA-LvuBgOEilj1gHDJhEcuGODzu8nrKzGN84B2ul6rCrrMJ1b0JVWWDVm-GyjiV9UjxnJwGrSBe_s8ues9un4SSZPozvhoNpUihjdBKERQwg1O4lcOOELoJJCVNAbXJpcoeclIUguAmpy0HkDkjPBQZn5hRkl123d1dN_bGhuPaLMhZUVbikehM9OKm1BaXSHdpv0aKpY2wo-FVTLrDZeuB-X8DvC_hDgZ2QtsJXWdH2H9oPRtn9Xzdp3TKu6fvgYvPujZVW-5fZ2OuRHYksHfpH-QM002wU</recordid><startdate>20160802</startdate><enddate>20160802</enddate><creator>Mei, Shengtao</creator><creator>Mehmood, Muhammad Qasim</creator><creator>Hussain, Sajid</creator><creator>Huang, Kun</creator><creator>Ling, Xiaohui</creator><creator>Siew, Shawn Yohanes</creator><creator>Liu, Hong</creator><creator>Teng, Jinghua</creator><creator>Danner, Aaron</creator><creator>Qiu, Cheng-Wei</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160802</creationdate><title>Flat Helical Nanosieves</title><author>Mei, Shengtao ; Mehmood, Muhammad Qasim ; Hussain, Sajid ; Huang, Kun ; Ling, Xiaohui ; Siew, Shawn Yohanes ; Liu, Hong ; Teng, Jinghua ; Danner, Aaron ; Qiu, Cheng-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4665-f27aaf124134106825cf69ea91a56b36b8a0e471f206f98b12b81e5d2af86def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Devices</topic><topic>flat helical devices</topic><topic>Flats</topic><topic>Fluid flow</topic><topic>Focusing</topic><topic>Interference</topic><topic>multifunctional</topic><topic>Multiplexing</topic><topic>nanosieves</topic><topic>Nanostructure</topic><topic>vortex</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Shengtao</creatorcontrib><creatorcontrib>Mehmood, Muhammad Qasim</creatorcontrib><creatorcontrib>Hussain, Sajid</creatorcontrib><creatorcontrib>Huang, Kun</creatorcontrib><creatorcontrib>Ling, Xiaohui</creatorcontrib><creatorcontrib>Siew, Shawn Yohanes</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Teng, Jinghua</creatorcontrib><creatorcontrib>Danner, Aaron</creatorcontrib><creatorcontrib>Qiu, Cheng-Wei</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Shengtao</au><au>Mehmood, Muhammad Qasim</au><au>Hussain, Sajid</au><au>Huang, Kun</au><au>Ling, Xiaohui</au><au>Siew, Shawn Yohanes</au><au>Liu, Hong</au><au>Teng, Jinghua</au><au>Danner, Aaron</au><au>Qiu, Cheng-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flat Helical Nanosieves</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2016-08-02</date><risdate>2016</risdate><volume>26</volume><issue>29</issue><spage>5255</spage><epage>5262</epage><pages>5255-5262</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Compact and miniaturized devices with flexible functionalities are always highly demanded in optical integrated systems. Plasmonic nanosieve has been successfully harnessed as an ultrathin flat platform for complex manipulation of light, including holography, vortex generation, and nonlinear processes. Compared with most of the reported single‐functional devices, multifunctional nanosieves might find more complex and novel applications across nanophotonics, optics, and nanotechnology. Here, a promising roadmap for nanosieve‐based helical devices is experimentally demonstrated, which achieves full manipulations of optical vortices, including its generation, hybridization, spatial multiplexing, focusing and nondiffraction propagation, etc., by controlling the geometric phase of spin light via over 121 thousands of spatially rotated nanosieves. Thanks to such spin‐conversion nanosieve helical elements, it is no longer necessary to employ the conventional two‐beam interferometric measurement to characterize optical vortices, while the interference can be realized natively without changing any parts of the current setup. The proposed strategy makes the far‐field manipulations of optical orbital angular momentum within an ultrathin interface viable and bridges singular optics and integrated optics. In addition, it enables more unique extensibility and flexibility in versatile optical elements than traditional phase‐accumulated helical optical devices. A nanosieve array is endowed with the abilities of full manipulations of electromagnetic waves. Its phase encoding is especially investigated in beam forming/steering, imaging, and many other significant applications. Based on the double‐ring nanosieves, a novel class of helical optical devices is proposed and demonstrated with a (almost) complete set of various designs for vortex generation, multiplexing, interaction, focusing, and interference.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adfm.201601345</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2016-08, Vol.26 (29), p.5255-5262
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1835571449
source Wiley Online Library
subjects Devices
flat helical devices
Flats
Fluid flow
Focusing
Interference
multifunctional
Multiplexing
nanosieves
Nanostructure
vortex
Vortices
title Flat Helical Nanosieves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flat%20Helical%20Nanosieves&rft.jtitle=Advanced%20functional%20materials&rft.au=Mei,%20Shengtao&rft.date=2016-08-02&rft.volume=26&rft.issue=29&rft.spage=5255&rft.epage=5262&rft.pages=5255-5262&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201601345&rft_dat=%3Cproquest_cross%3E1835571449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835571449&rft_id=info:pmid/&rfr_iscdi=true