Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains
We investigate isoperimetric upper bounds for sums of consecutive Steklov eigenvalues of planar domains. The normalization involves the perimeter and scale-invariant geometric factors which measure deviation of the domain from roundness. We prove sharp upper bounds for both starlike and simply conne...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2016-02, Vol.219 (2), p.903-936 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate isoperimetric upper bounds for sums of consecutive Steklov eigenvalues of planar domains. The normalization involves the perimeter and scale-invariant geometric factors which measure deviation of the domain from roundness. We prove sharp upper bounds for both starlike and simply connected domains for a large collection of spectral functionals including partial sums of the zeta function and heat trace. The proofs rely on a special class of quasiconformal mappings. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-015-0912-8 |