Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code

We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for [thickapproximate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-06, Vol.93 (12), Article 124062
Hauptverfasser: Haas, Roland, Ott, Christian D., Szilagyi, Bela, Kaplan, Jeffrey D., Lippuner, Jonas, Scheel, Mark A., Barkett, Kevin, Muhlberger, Curran D., Dietrich, Tim, Duez, Matthew D., Foucart, Francois, Pfeiffer, Harald P., Kidder, Lawrence E., Teukolsky, Saul A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for [thickapproximate] 22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.93.124062