Evolution of an early Titan atmosphere

Rapid escape from a proposed early CH4/NH3 atmosphere on Titan could, in principle, limit the amount of NH3 that is converted by photolysis into the present N2 atmosphere. Assuming that this conversion occurred, a recent estimate of escape driven by the surface temperature and pressure was used to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2016-06, Vol.271, p.202-206
Hauptverfasser: Johnson, R.E., Tucker, O.J., Volkov, A.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue
container_start_page 202
container_title Icarus (New York, N.Y. 1962)
container_volume 271
creator Johnson, R.E.
Tucker, O.J.
Volkov, A.N.
description Rapid escape from a proposed early CH4/NH3 atmosphere on Titan could, in principle, limit the amount of NH3 that is converted by photolysis into the present N2 atmosphere. Assuming that this conversion occurred, a recent estimate of escape driven by the surface temperature and pressure was used to constrain Titan's accretion temperature. Here we show that for the range of temperatures of interest, heating of the surface is not the primary driver for escape. Atmospheric loss from a thick Titan atmosphere is predominantly driven by heating of the upper atmosphere; therefore, the loss rate cannot be used to easily constrain the accretion temperature. We give an estimate of the solar driven escape rate from an early atmosphere on Titan, and then briefly discuss its relevance to the cooling rate, isotope ratios, and the time period suggested to convert NH3 to the present N2 atmosphere.
doi_str_mv 10.1016/j.icarus.2016.01.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835566145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001910351600018X</els_id><sourcerecordid>1827909348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-51bc5b316d4397eda8ce4c69a845c1eb7bcefb79707ed8c38c1103ac699bd8b63</originalsourceid><addsrcrecordid>eNqNUE1LxDAQDaLguvoPPPQkXlozTdImF0GW9QMWvKznkKZTzNJt1qRd2H9vpJ5FeDAzzHuPmUfILdACKFQPu8JZE6ZYlGkqKCTwM7IAqmheVpydkwWloHKgTFySqxh3lFIhFVuQu_XR99Po_JD5LjNDhib0p2zrxtSbce_j4RMDXpOLzvQRb37rknw8r7er13zz_vK2etrkltXlmAtorGgYVC1nqsbWSIvcVspILixgUzcWu6ZWNU1LaZm0kG4yiaGaVjYVW5L72fcQ_NeEcdR7Fy32vRnQT1GDZEJUFXDxD2pZK6oYl4nKZ6oNPsaAnT4EtzfhpIHqnwT1Ts8J6p8ENYUEnmSPswzTx0eHQUfrcLDYuoB21K13fxt8A1q2ens</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827909348</pqid></control><display><type>article</type><title>Evolution of an early Titan atmosphere</title><source>Elsevier ScienceDirect Journals</source><creator>Johnson, R.E. ; Tucker, O.J. ; Volkov, A.N.</creator><creatorcontrib>Johnson, R.E. ; Tucker, O.J. ; Volkov, A.N.</creatorcontrib><description>Rapid escape from a proposed early CH4/NH3 atmosphere on Titan could, in principle, limit the amount of NH3 that is converted by photolysis into the present N2 atmosphere. Assuming that this conversion occurred, a recent estimate of escape driven by the surface temperature and pressure was used to constrain Titan's accretion temperature. Here we show that for the range of temperatures of interest, heating of the surface is not the primary driver for escape. Atmospheric loss from a thick Titan atmosphere is predominantly driven by heating of the upper atmosphere; therefore, the loss rate cannot be used to easily constrain the accretion temperature. We give an estimate of the solar driven escape rate from an early atmosphere on Titan, and then briefly discuss its relevance to the cooling rate, isotope ratios, and the time period suggested to convert NH3 to the present N2 atmosphere.</description><identifier>ISSN: 0019-1035</identifier><identifier>EISSN: 1090-2643</identifier><identifier>DOI: 10.1016/j.icarus.2016.01.014</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accretion ; Atmosphere ; Atmospheres ; Atmospheres, evolution ; Conversion ; Estimates ; Evolution ; Heating ; Saturn satellites ; Titan</subject><ispartof>Icarus (New York, N.Y. 1962), 2016-06, Vol.271, p.202-206</ispartof><rights>2016 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-51bc5b316d4397eda8ce4c69a845c1eb7bcefb79707ed8c38c1103ac699bd8b63</citedby><cites>FETCH-LOGICAL-c372t-51bc5b316d4397eda8ce4c69a845c1eb7bcefb79707ed8c38c1103ac699bd8b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001910351600018X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Johnson, R.E.</creatorcontrib><creatorcontrib>Tucker, O.J.</creatorcontrib><creatorcontrib>Volkov, A.N.</creatorcontrib><title>Evolution of an early Titan atmosphere</title><title>Icarus (New York, N.Y. 1962)</title><description>Rapid escape from a proposed early CH4/NH3 atmosphere on Titan could, in principle, limit the amount of NH3 that is converted by photolysis into the present N2 atmosphere. Assuming that this conversion occurred, a recent estimate of escape driven by the surface temperature and pressure was used to constrain Titan's accretion temperature. Here we show that for the range of temperatures of interest, heating of the surface is not the primary driver for escape. Atmospheric loss from a thick Titan atmosphere is predominantly driven by heating of the upper atmosphere; therefore, the loss rate cannot be used to easily constrain the accretion temperature. We give an estimate of the solar driven escape rate from an early atmosphere on Titan, and then briefly discuss its relevance to the cooling rate, isotope ratios, and the time period suggested to convert NH3 to the present N2 atmosphere.</description><subject>Accretion</subject><subject>Atmosphere</subject><subject>Atmospheres</subject><subject>Atmospheres, evolution</subject><subject>Conversion</subject><subject>Estimates</subject><subject>Evolution</subject><subject>Heating</subject><subject>Saturn satellites</subject><subject>Titan</subject><issn>0019-1035</issn><issn>1090-2643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LxDAQDaLguvoPPPQkXlozTdImF0GW9QMWvKznkKZTzNJt1qRd2H9vpJ5FeDAzzHuPmUfILdACKFQPu8JZE6ZYlGkqKCTwM7IAqmheVpydkwWloHKgTFySqxh3lFIhFVuQu_XR99Po_JD5LjNDhib0p2zrxtSbce_j4RMDXpOLzvQRb37rknw8r7er13zz_vK2etrkltXlmAtorGgYVC1nqsbWSIvcVspILixgUzcWu6ZWNU1LaZm0kG4yiaGaVjYVW5L72fcQ_NeEcdR7Fy32vRnQT1GDZEJUFXDxD2pZK6oYl4nKZ6oNPsaAnT4EtzfhpIHqnwT1Ts8J6p8ENYUEnmSPswzTx0eHQUfrcLDYuoB21K13fxt8A1q2ens</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Johnson, R.E.</creator><creator>Tucker, O.J.</creator><creator>Volkov, A.N.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201606</creationdate><title>Evolution of an early Titan atmosphere</title><author>Johnson, R.E. ; Tucker, O.J. ; Volkov, A.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-51bc5b316d4397eda8ce4c69a845c1eb7bcefb79707ed8c38c1103ac699bd8b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accretion</topic><topic>Atmosphere</topic><topic>Atmospheres</topic><topic>Atmospheres, evolution</topic><topic>Conversion</topic><topic>Estimates</topic><topic>Evolution</topic><topic>Heating</topic><topic>Saturn satellites</topic><topic>Titan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, R.E.</creatorcontrib><creatorcontrib>Tucker, O.J.</creatorcontrib><creatorcontrib>Volkov, A.N.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Icarus (New York, N.Y. 1962)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, R.E.</au><au>Tucker, O.J.</au><au>Volkov, A.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of an early Titan atmosphere</atitle><jtitle>Icarus (New York, N.Y. 1962)</jtitle><date>2016-06</date><risdate>2016</risdate><volume>271</volume><spage>202</spage><epage>206</epage><pages>202-206</pages><issn>0019-1035</issn><eissn>1090-2643</eissn><abstract>Rapid escape from a proposed early CH4/NH3 atmosphere on Titan could, in principle, limit the amount of NH3 that is converted by photolysis into the present N2 atmosphere. Assuming that this conversion occurred, a recent estimate of escape driven by the surface temperature and pressure was used to constrain Titan's accretion temperature. Here we show that for the range of temperatures of interest, heating of the surface is not the primary driver for escape. Atmospheric loss from a thick Titan atmosphere is predominantly driven by heating of the upper atmosphere; therefore, the loss rate cannot be used to easily constrain the accretion temperature. We give an estimate of the solar driven escape rate from an early atmosphere on Titan, and then briefly discuss its relevance to the cooling rate, isotope ratios, and the time period suggested to convert NH3 to the present N2 atmosphere.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.icarus.2016.01.014</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-1035
ispartof Icarus (New York, N.Y. 1962), 2016-06, Vol.271, p.202-206
issn 0019-1035
1090-2643
language eng
recordid cdi_proquest_miscellaneous_1835566145
source Elsevier ScienceDirect Journals
subjects Accretion
Atmosphere
Atmospheres
Atmospheres, evolution
Conversion
Estimates
Evolution
Heating
Saturn satellites
Titan
title Evolution of an early Titan atmosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20an%20early%20Titan%20atmosphere&rft.jtitle=Icarus%20(New%20York,%20N.Y.%201962)&rft.au=Johnson,%20R.E.&rft.date=2016-06&rft.volume=271&rft.spage=202&rft.epage=206&rft.pages=202-206&rft.issn=0019-1035&rft.eissn=1090-2643&rft_id=info:doi/10.1016/j.icarus.2016.01.014&rft_dat=%3Cproquest_cross%3E1827909348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827909348&rft_id=info:pmid/&rft_els_id=S001910351600018X&rfr_iscdi=true