Understanding soft glassy materials using an energy landscape approach
Many seemingly different soft materials—such as soap foams, mayonnaise, toothpaste and living cells—display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here,...
Gespeichert in:
Veröffentlicht in: | Nature materials 2016-09, Vol.15 (9), p.1031-1036 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1036 |
---|---|
container_issue | 9 |
container_start_page | 1031 |
container_title | Nature materials |
container_volume | 15 |
creator | Hwang, Hyun Joo Riggleman, Robert A. Crocker, John C. |
description | Many seemingly different soft materials—such as soap foams, mayonnaise, toothpaste and living cells—display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam’s dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.
Results from a model soap foam consisting of compressible spherical bubbles suggest that soft glassy rheology results from emergent fractal geometry in the foam’s energy landscape. |
doi_str_mv | 10.1038/nmat4663 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835565784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4158696831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-afa48b40e186c45cb1ceb1d7fa52ffc33ab558858da0b47051262d86ec0809b53</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQQBdRbK2Cv0ACXvQQ3c9kPUqxKhS82HPYbCYxJdnUneTQf-_Wtio9yRxmYB5vdnYIuWT0jlGh711repkk4oiMmUyTONT0eFczxvmInCEuKeVMqeSUjHgqONdcjMls4Qrw2BtX1K6KsCv7qGoM4joKTvC1aTAacNMzLgIHvlpHTaDRmhVEZrXynbEf5-SkDCRc7PKELGZP79OXeP72_Dp9nMdWMtXHpjRS55IC04mVyubMQs6KtDSKl6UVwuRKaa10YWguU6oYT3ihE7BU04dciQm52XrD2M8BsM_aGi004UXQDZgxLcKGKtXyHyiTIagUAb0-QJfd4F1Y5JtKOWWS_gqt7xA9lNnK163x64zRbHOGbH-GgF7thEPeQvED7v89ALdbAEPLVeD_TDyUfQG6Ao_k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814720140</pqid></control><display><type>article</type><title>Understanding soft glassy materials using an energy landscape approach</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Hwang, Hyun Joo ; Riggleman, Robert A. ; Crocker, John C.</creator><creatorcontrib>Hwang, Hyun Joo ; Riggleman, Robert A. ; Crocker, John C.</creatorcontrib><description>Many seemingly different soft materials—such as soap foams, mayonnaise, toothpaste and living cells—display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam’s dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.
Results from a model soap foam consisting of compressible spherical bubbles suggest that soft glassy rheology results from emergent fractal geometry in the foam’s energy landscape.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4663</identifier><identifier>PMID: 27322823</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/1034/1036 ; 639/301/923/1029 ; 639/301/923/218 ; Avalanches ; Biomaterials ; Bubbles ; Compressibility ; Computational fluid dynamics ; Condensed Matter Physics ; Configurations ; Energy ; Energy conservation ; Energy use ; Foams ; Fractal analysis ; Fractal geometry ; Fractal models ; Fractals ; Landscapes ; Materials Science ; Mathematical models ; Nanotechnology ; Optical and Electronic Materials ; Rheological properties ; Rheology ; Soaps ; Toothpaste ; Viscoelasticity</subject><ispartof>Nature materials, 2016-09, Vol.15 (9), p.1031-1036</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-afa48b40e186c45cb1ceb1d7fa52ffc33ab558858da0b47051262d86ec0809b53</citedby><cites>FETCH-LOGICAL-c415t-afa48b40e186c45cb1ceb1d7fa52ffc33ab558858da0b47051262d86ec0809b53</cites><orcidid>0000-0001-6239-6010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27322823$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hwang, Hyun Joo</creatorcontrib><creatorcontrib>Riggleman, Robert A.</creatorcontrib><creatorcontrib>Crocker, John C.</creatorcontrib><title>Understanding soft glassy materials using an energy landscape approach</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Many seemingly different soft materials—such as soap foams, mayonnaise, toothpaste and living cells—display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam’s dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.
Results from a model soap foam consisting of compressible spherical bubbles suggest that soft glassy rheology results from emergent fractal geometry in the foam’s energy landscape.</description><subject>119/118</subject><subject>639/301/1034/1036</subject><subject>639/301/923/1029</subject><subject>639/301/923/218</subject><subject>Avalanches</subject><subject>Biomaterials</subject><subject>Bubbles</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Condensed Matter Physics</subject><subject>Configurations</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy use</subject><subject>Foams</subject><subject>Fractal analysis</subject><subject>Fractal geometry</subject><subject>Fractal models</subject><subject>Fractals</subject><subject>Landscapes</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Soaps</subject><subject>Toothpaste</subject><subject>Viscoelasticity</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1Lw0AQQBdRbK2Cv0ACXvQQ3c9kPUqxKhS82HPYbCYxJdnUneTQf-_Wtio9yRxmYB5vdnYIuWT0jlGh711repkk4oiMmUyTONT0eFczxvmInCEuKeVMqeSUjHgqONdcjMls4Qrw2BtX1K6KsCv7qGoM4joKTvC1aTAacNMzLgIHvlpHTaDRmhVEZrXynbEf5-SkDCRc7PKELGZP79OXeP72_Dp9nMdWMtXHpjRS55IC04mVyubMQs6KtDSKl6UVwuRKaa10YWguU6oYT3ihE7BU04dciQm52XrD2M8BsM_aGi004UXQDZgxLcKGKtXyHyiTIagUAb0-QJfd4F1Y5JtKOWWS_gqt7xA9lNnK163x64zRbHOGbH-GgF7thEPeQvED7v89ALdbAEPLVeD_TDyUfQG6Ao_k</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Hwang, Hyun Joo</creator><creator>Riggleman, Robert A.</creator><creator>Crocker, John C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6239-6010</orcidid></search><sort><creationdate>20160901</creationdate><title>Understanding soft glassy materials using an energy landscape approach</title><author>Hwang, Hyun Joo ; Riggleman, Robert A. ; Crocker, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-afa48b40e186c45cb1ceb1d7fa52ffc33ab558858da0b47051262d86ec0809b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>119/118</topic><topic>639/301/1034/1036</topic><topic>639/301/923/1029</topic><topic>639/301/923/218</topic><topic>Avalanches</topic><topic>Biomaterials</topic><topic>Bubbles</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Condensed Matter Physics</topic><topic>Configurations</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy use</topic><topic>Foams</topic><topic>Fractal analysis</topic><topic>Fractal geometry</topic><topic>Fractal models</topic><topic>Fractals</topic><topic>Landscapes</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Soaps</topic><topic>Toothpaste</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Hyun Joo</creatorcontrib><creatorcontrib>Riggleman, Robert A.</creatorcontrib><creatorcontrib>Crocker, John C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Hyun Joo</au><au>Riggleman, Robert A.</au><au>Crocker, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding soft glassy materials using an energy landscape approach</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>15</volume><issue>9</issue><spage>1031</spage><epage>1036</epage><pages>1031-1036</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Many seemingly different soft materials—such as soap foams, mayonnaise, toothpaste and living cells—display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam’s dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.
Results from a model soap foam consisting of compressible spherical bubbles suggest that soft glassy rheology results from emergent fractal geometry in the foam’s energy landscape.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27322823</pmid><doi>10.1038/nmat4663</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6239-6010</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2016-09, Vol.15 (9), p.1031-1036 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835565784 |
source | Nature Journals Online; Alma/SFX Local Collection |
subjects | 119/118 639/301/1034/1036 639/301/923/1029 639/301/923/218 Avalanches Biomaterials Bubbles Compressibility Computational fluid dynamics Condensed Matter Physics Configurations Energy Energy conservation Energy use Foams Fractal analysis Fractal geometry Fractal models Fractals Landscapes Materials Science Mathematical models Nanotechnology Optical and Electronic Materials Rheological properties Rheology Soaps Toothpaste Viscoelasticity |
title | Understanding soft glassy materials using an energy landscape approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20soft%20glassy%20materials%20using%20an%20energy%20landscape%20approach&rft.jtitle=Nature%20materials&rft.au=Hwang,%20Hyun%20Joo&rft.date=2016-09-01&rft.volume=15&rft.issue=9&rft.spage=1031&rft.epage=1036&rft.pages=1031-1036&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4663&rft_dat=%3Cproquest_cross%3E4158696831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814720140&rft_id=info:pmid/27322823&rfr_iscdi=true |