A novel social network mining approach for customer segmentation and viral marketing
Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral ma...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Data mining and knowledge discovery 2016-09, Vol.6 (5), p.177-189 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 5 |
container_start_page | 177 |
container_title | Wiley interdisciplinary reviews. Data mining and knowledge discovery |
container_volume | 6 |
creator | Helal, Nivin A. Ismail, Rasha M. Badr, Nagwa L. Mostafa, Mostafa G. M. |
description | Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral marketing. In this article, we propose a novel social network mining approach for influential analysis and community detection. The community detection task benefits from the most influential users in the network. The proposed approach identifies the most influential users by using a direct mining leaders discovery algorithm and uses these leaders as core points to expand communities around them. This is based on the observation that communities tend to be formed around users of great influence. Extensive experiments have been completed on a real dataset and results show that our approach can contribute in identifying communities of high quality. WIREs Data Mining Knowl Discov 2016, 6:177–189. doi: 10.1002/widm.1183
This article is categorized under:
Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining
Technologies > Structure Discovery and Clustering |
doi_str_mv | 10.1002/widm.1183 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835561788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827900536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4723-fa530d113712f9753a8707510f1ad2417e020b2d9e80ac7fb034f96750b6cbf13</originalsourceid><addsrcrecordid>eNqNkcFOGzEQhleolUCUA29giQs9bOKx1zveI4JCqdJWRUEcLWfXBsOundobUt6-jhJxQKKqL-PD941m5i-KY6AToJRN164bJgCS7xUH0FSsrLARH17_EveLo5QeaX6cSSnZQTE_Iz48m56k0DrdE2_GdYhPZHDe-Xuil8sYdPtAbIikXaUxDCaSZO4H40c9uuCJ9h15djG7g45PZszap-Kj1X0yR7t6WNxefpmffy1nP6-uz89mZVsh46XVgtMOgCMw26DgWiJFAdSC7lgFaCijC9Y1RlLdol1QXtmmRkEXdbuwwA-L023fPOTvlUmjGlxqTd9rb8IqqXwJIWpAKf8DZdhQKnid0ZM36GNYRZ8XUdCgZLyBWvyTkkAR8iqYqc9bqo0hpWisWkaX7_SigKpNZmqTmdpkltnpll273ry8D6q764vvO6PcGi6N5s-rkWNQNXIU6u7HlZr9uhA382-g5vwvaNaliA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810717077</pqid></control><display><type>article</type><title>A novel social network mining approach for customer segmentation and viral marketing</title><source>Access via Wiley Online Library</source><creator>Helal, Nivin A. ; Ismail, Rasha M. ; Badr, Nagwa L. ; Mostafa, Mostafa G. M.</creator><creatorcontrib>Helal, Nivin A. ; Ismail, Rasha M. ; Badr, Nagwa L. ; Mostafa, Mostafa G. M.</creatorcontrib><description>Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral marketing. In this article, we propose a novel social network mining approach for influential analysis and community detection. The community detection task benefits from the most influential users in the network. The proposed approach identifies the most influential users by using a direct mining leaders discovery algorithm and uses these leaders as core points to expand communities around them. This is based on the observation that communities tend to be formed around users of great influence. Extensive experiments have been completed on a real dataset and results show that our approach can contribute in identifying communities of high quality. WIREs Data Mining Knowl Discov 2016, 6:177–189. doi: 10.1002/widm.1183
This article is categorized under:
Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining
Technologies > Structure Discovery and Clustering</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.1183</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Clustering ; Communities ; Customers ; Data mining ; Emergence ; Marketing ; Mining ; Monitoring ; Social networks ; Tasks ; Viral marketing ; Wire</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2016-09, Vol.6 (5), p.177-189</ispartof><rights>2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4723-fa530d113712f9753a8707510f1ad2417e020b2d9e80ac7fb034f96750b6cbf13</citedby><cites>FETCH-LOGICAL-c4723-fa530d113712f9753a8707510f1ad2417e020b2d9e80ac7fb034f96750b6cbf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwidm.1183$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwidm.1183$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Helal, Nivin A.</creatorcontrib><creatorcontrib>Ismail, Rasha M.</creatorcontrib><creatorcontrib>Badr, Nagwa L.</creatorcontrib><creatorcontrib>Mostafa, Mostafa G. M.</creatorcontrib><title>A novel social network mining approach for customer segmentation and viral marketing</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><addtitle>WIREs Data Mining Knowl Discov</addtitle><description>Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral marketing. In this article, we propose a novel social network mining approach for influential analysis and community detection. The community detection task benefits from the most influential users in the network. The proposed approach identifies the most influential users by using a direct mining leaders discovery algorithm and uses these leaders as core points to expand communities around them. This is based on the observation that communities tend to be formed around users of great influence. Extensive experiments have been completed on a real dataset and results show that our approach can contribute in identifying communities of high quality. WIREs Data Mining Knowl Discov 2016, 6:177–189. doi: 10.1002/widm.1183
This article is categorized under:
Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining
Technologies > Structure Discovery and Clustering</description><subject>Clustering</subject><subject>Communities</subject><subject>Customers</subject><subject>Data mining</subject><subject>Emergence</subject><subject>Marketing</subject><subject>Mining</subject><subject>Monitoring</subject><subject>Social networks</subject><subject>Tasks</subject><subject>Viral marketing</subject><subject>Wire</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFOGzEQhleolUCUA29giQs9bOKx1zveI4JCqdJWRUEcLWfXBsOundobUt6-jhJxQKKqL-PD941m5i-KY6AToJRN164bJgCS7xUH0FSsrLARH17_EveLo5QeaX6cSSnZQTE_Iz48m56k0DrdE2_GdYhPZHDe-Xuil8sYdPtAbIikXaUxDCaSZO4H40c9uuCJ9h15djG7g45PZszap-Kj1X0yR7t6WNxefpmffy1nP6-uz89mZVsh46XVgtMOgCMw26DgWiJFAdSC7lgFaCijC9Y1RlLdol1QXtmmRkEXdbuwwA-L023fPOTvlUmjGlxqTd9rb8IqqXwJIWpAKf8DZdhQKnid0ZM36GNYRZ8XUdCgZLyBWvyTkkAR8iqYqc9bqo0hpWisWkaX7_SigKpNZmqTmdpkltnpll273ry8D6q764vvO6PcGi6N5s-rkWNQNXIU6u7HlZr9uhA382-g5vwvaNaliA</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Helal, Nivin A.</creator><creator>Ismail, Rasha M.</creator><creator>Badr, Nagwa L.</creator><creator>Mostafa, Mostafa G. M.</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>201609</creationdate><title>A novel social network mining approach for customer segmentation and viral marketing</title><author>Helal, Nivin A. ; Ismail, Rasha M. ; Badr, Nagwa L. ; Mostafa, Mostafa G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4723-fa530d113712f9753a8707510f1ad2417e020b2d9e80ac7fb034f96750b6cbf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Clustering</topic><topic>Communities</topic><topic>Customers</topic><topic>Data mining</topic><topic>Emergence</topic><topic>Marketing</topic><topic>Mining</topic><topic>Monitoring</topic><topic>Social networks</topic><topic>Tasks</topic><topic>Viral marketing</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helal, Nivin A.</creatorcontrib><creatorcontrib>Ismail, Rasha M.</creatorcontrib><creatorcontrib>Badr, Nagwa L.</creatorcontrib><creatorcontrib>Mostafa, Mostafa G. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helal, Nivin A.</au><au>Ismail, Rasha M.</au><au>Badr, Nagwa L.</au><au>Mostafa, Mostafa G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel social network mining approach for customer segmentation and viral marketing</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><addtitle>WIREs Data Mining Knowl Discov</addtitle><date>2016-09</date><risdate>2016</risdate><volume>6</volume><issue>5</issue><spage>177</spage><epage>189</epage><pages>177-189</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral marketing. In this article, we propose a novel social network mining approach for influential analysis and community detection. The community detection task benefits from the most influential users in the network. The proposed approach identifies the most influential users by using a direct mining leaders discovery algorithm and uses these leaders as core points to expand communities around them. This is based on the observation that communities tend to be formed around users of great influence. Extensive experiments have been completed on a real dataset and results show that our approach can contribute in identifying communities of high quality. WIREs Data Mining Knowl Discov 2016, 6:177–189. doi: 10.1002/widm.1183
This article is categorized under:
Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining
Technologies > Structure Discovery and Clustering</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/widm.1183</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-4787 |
ispartof | Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2016-09, Vol.6 (5), p.177-189 |
issn | 1942-4787 1942-4795 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835561788 |
source | Access via Wiley Online Library |
subjects | Clustering Communities Customers Data mining Emergence Marketing Mining Monitoring Social networks Tasks Viral marketing Wire |
title | A novel social network mining approach for customer segmentation and viral marketing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20social%20network%20mining%20approach%20for%20customer%20segmentation%20and%20viral%20marketing&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Helal,%20Nivin%20A.&rft.date=2016-09&rft.volume=6&rft.issue=5&rft.spage=177&rft.epage=189&rft.pages=177-189&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.1183&rft_dat=%3Cproquest_cross%3E1827900536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810717077&rft_id=info:pmid/&rfr_iscdi=true |