A novel social network mining approach for customer segmentation and viral marketing

Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Data mining and knowledge discovery 2016-09, Vol.6 (5), p.177-189
Hauptverfasser: Helal, Nivin A., Ismail, Rasha M., Badr, Nagwa L., Mostafa, Mostafa G. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 5
container_start_page 177
container_title Wiley interdisciplinary reviews. Data mining and knowledge discovery
container_volume 6
creator Helal, Nivin A.
Ismail, Rasha M.
Badr, Nagwa L.
Mostafa, Mostafa G. M.
description Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral marketing. In this article, we propose a novel social network mining approach for influential analysis and community detection. The community detection task benefits from the most influential users in the network. The proposed approach identifies the most influential users by using a direct mining leaders discovery algorithm and uses these leaders as core points to expand communities around them. This is based on the observation that communities tend to be formed around users of great influence. Extensive experiments have been completed on a real dataset and results show that our approach can contribute in identifying communities of high quality. WIREs Data Mining Knowl Discov 2016, 6:177–189. doi: 10.1002/widm.1183 This article is categorized under: Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining Technologies > Structure Discovery and Clustering
doi_str_mv 10.1002/widm.1183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835561788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827900536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4723-fa530d113712f9753a8707510f1ad2417e020b2d9e80ac7fb034f96750b6cbf13</originalsourceid><addsrcrecordid>eNqNkcFOGzEQhleolUCUA29giQs9bOKx1zveI4JCqdJWRUEcLWfXBsOundobUt6-jhJxQKKqL-PD941m5i-KY6AToJRN164bJgCS7xUH0FSsrLARH17_EveLo5QeaX6cSSnZQTE_Iz48m56k0DrdE2_GdYhPZHDe-Xuil8sYdPtAbIikXaUxDCaSZO4H40c9uuCJ9h15djG7g45PZszap-Kj1X0yR7t6WNxefpmffy1nP6-uz89mZVsh46XVgtMOgCMw26DgWiJFAdSC7lgFaCijC9Y1RlLdol1QXtmmRkEXdbuwwA-L023fPOTvlUmjGlxqTd9rb8IqqXwJIWpAKf8DZdhQKnid0ZM36GNYRZ8XUdCgZLyBWvyTkkAR8iqYqc9bqo0hpWisWkaX7_SigKpNZmqTmdpkltnpll273ry8D6q764vvO6PcGi6N5s-rkWNQNXIU6u7HlZr9uhA382-g5vwvaNaliA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810717077</pqid></control><display><type>article</type><title>A novel social network mining approach for customer segmentation and viral marketing</title><source>Access via Wiley Online Library</source><creator>Helal, Nivin A. ; Ismail, Rasha M. ; Badr, Nagwa L. ; Mostafa, Mostafa G. M.</creator><creatorcontrib>Helal, Nivin A. ; Ismail, Rasha M. ; Badr, Nagwa L. ; Mostafa, Mostafa G. M.</creatorcontrib><description>Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral marketing. In this article, we propose a novel social network mining approach for influential analysis and community detection. The community detection task benefits from the most influential users in the network. The proposed approach identifies the most influential users by using a direct mining leaders discovery algorithm and uses these leaders as core points to expand communities around them. This is based on the observation that communities tend to be formed around users of great influence. Extensive experiments have been completed on a real dataset and results show that our approach can contribute in identifying communities of high quality. WIREs Data Mining Knowl Discov 2016, 6:177–189. doi: 10.1002/widm.1183 This article is categorized under: Fundamental Concepts of Data and Knowledge &gt; Motivation and Emergence of Data Mining Technologies &gt; Structure Discovery and Clustering</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.1183</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Clustering ; Communities ; Customers ; Data mining ; Emergence ; Marketing ; Mining ; Monitoring ; Social networks ; Tasks ; Viral marketing ; Wire</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2016-09, Vol.6 (5), p.177-189</ispartof><rights>2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4723-fa530d113712f9753a8707510f1ad2417e020b2d9e80ac7fb034f96750b6cbf13</citedby><cites>FETCH-LOGICAL-c4723-fa530d113712f9753a8707510f1ad2417e020b2d9e80ac7fb034f96750b6cbf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwidm.1183$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwidm.1183$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Helal, Nivin A.</creatorcontrib><creatorcontrib>Ismail, Rasha M.</creatorcontrib><creatorcontrib>Badr, Nagwa L.</creatorcontrib><creatorcontrib>Mostafa, Mostafa G. M.</creatorcontrib><title>A novel social network mining approach for customer segmentation and viral marketing</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><addtitle>WIREs Data Mining Knowl Discov</addtitle><description>Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral marketing. In this article, we propose a novel social network mining approach for influential analysis and community detection. The community detection task benefits from the most influential users in the network. The proposed approach identifies the most influential users by using a direct mining leaders discovery algorithm and uses these leaders as core points to expand communities around them. This is based on the observation that communities tend to be formed around users of great influence. Extensive experiments have been completed on a real dataset and results show that our approach can contribute in identifying communities of high quality. WIREs Data Mining Knowl Discov 2016, 6:177–189. doi: 10.1002/widm.1183 This article is categorized under: Fundamental Concepts of Data and Knowledge &gt; Motivation and Emergence of Data Mining Technologies &gt; Structure Discovery and Clustering</description><subject>Clustering</subject><subject>Communities</subject><subject>Customers</subject><subject>Data mining</subject><subject>Emergence</subject><subject>Marketing</subject><subject>Mining</subject><subject>Monitoring</subject><subject>Social networks</subject><subject>Tasks</subject><subject>Viral marketing</subject><subject>Wire</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFOGzEQhleolUCUA29giQs9bOKx1zveI4JCqdJWRUEcLWfXBsOundobUt6-jhJxQKKqL-PD941m5i-KY6AToJRN164bJgCS7xUH0FSsrLARH17_EveLo5QeaX6cSSnZQTE_Iz48m56k0DrdE2_GdYhPZHDe-Xuil8sYdPtAbIikXaUxDCaSZO4H40c9uuCJ9h15djG7g45PZszap-Kj1X0yR7t6WNxefpmffy1nP6-uz89mZVsh46XVgtMOgCMw26DgWiJFAdSC7lgFaCijC9Y1RlLdol1QXtmmRkEXdbuwwA-L023fPOTvlUmjGlxqTd9rb8IqqXwJIWpAKf8DZdhQKnid0ZM36GNYRZ8XUdCgZLyBWvyTkkAR8iqYqc9bqo0hpWisWkaX7_SigKpNZmqTmdpkltnpll273ry8D6q764vvO6PcGi6N5s-rkWNQNXIU6u7HlZr9uhA382-g5vwvaNaliA</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Helal, Nivin A.</creator><creator>Ismail, Rasha M.</creator><creator>Badr, Nagwa L.</creator><creator>Mostafa, Mostafa G. M.</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>201609</creationdate><title>A novel social network mining approach for customer segmentation and viral marketing</title><author>Helal, Nivin A. ; Ismail, Rasha M. ; Badr, Nagwa L. ; Mostafa, Mostafa G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4723-fa530d113712f9753a8707510f1ad2417e020b2d9e80ac7fb034f96750b6cbf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Clustering</topic><topic>Communities</topic><topic>Customers</topic><topic>Data mining</topic><topic>Emergence</topic><topic>Marketing</topic><topic>Mining</topic><topic>Monitoring</topic><topic>Social networks</topic><topic>Tasks</topic><topic>Viral marketing</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helal, Nivin A.</creatorcontrib><creatorcontrib>Ismail, Rasha M.</creatorcontrib><creatorcontrib>Badr, Nagwa L.</creatorcontrib><creatorcontrib>Mostafa, Mostafa G. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helal, Nivin A.</au><au>Ismail, Rasha M.</au><au>Badr, Nagwa L.</au><au>Mostafa, Mostafa G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel social network mining approach for customer segmentation and viral marketing</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><addtitle>WIREs Data Mining Knowl Discov</addtitle><date>2016-09</date><risdate>2016</risdate><volume>6</volume><issue>5</issue><spage>177</spage><epage>189</epage><pages>177-189</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>Emergence of social networks facilitates individuals to communicate, share opinions and form communities. Organizations benefit from social networks in monitoring customers’ behavior. Social networks mining and analysis aims to segment customers and determine the most influential actors for viral marketing. In this article, we propose a novel social network mining approach for influential analysis and community detection. The community detection task benefits from the most influential users in the network. The proposed approach identifies the most influential users by using a direct mining leaders discovery algorithm and uses these leaders as core points to expand communities around them. This is based on the observation that communities tend to be formed around users of great influence. Extensive experiments have been completed on a real dataset and results show that our approach can contribute in identifying communities of high quality. WIREs Data Mining Knowl Discov 2016, 6:177–189. doi: 10.1002/widm.1183 This article is categorized under: Fundamental Concepts of Data and Knowledge &gt; Motivation and Emergence of Data Mining Technologies &gt; Structure Discovery and Clustering</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/widm.1183</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1942-4787
ispartof Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2016-09, Vol.6 (5), p.177-189
issn 1942-4787
1942-4795
language eng
recordid cdi_proquest_miscellaneous_1835561788
source Access via Wiley Online Library
subjects Clustering
Communities
Customers
Data mining
Emergence
Marketing
Mining
Monitoring
Social networks
Tasks
Viral marketing
Wire
title A novel social network mining approach for customer segmentation and viral marketing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T02%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20social%20network%20mining%20approach%20for%20customer%20segmentation%20and%20viral%20marketing&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Helal,%20Nivin%20A.&rft.date=2016-09&rft.volume=6&rft.issue=5&rft.spage=177&rft.epage=189&rft.pages=177-189&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.1183&rft_dat=%3Cproquest_cross%3E1827900536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810717077&rft_id=info:pmid/&rfr_iscdi=true