Analisis de Modelos Mentales Aplicado al Proceso de Aprendizaje/[ Analysis of Mental Models Applied to the Learning Process ]

Mental model representation using fuzzy graphs have recently grown in popularity for decision support and knowledge representation. Finding the most important node in the model has multiple applications. This paper presents a new model for static analysis in fuzzy graphs applied to the learning proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovation and applied studies 2016-06, Vol.16 (3), p.528-528
Hauptverfasser: Colombo, Katya Martha Faggioni, Villagomez, Mario Mata, Granda, Julio Bruce Novillo, Rivas, Fabiola Rosa Lopezdominguez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 3
container_start_page 528
container_title International journal of innovation and applied studies
container_volume 16
creator Colombo, Katya Martha Faggioni
Villagomez, Mario Mata
Granda, Julio Bruce Novillo
Rivas, Fabiola Rosa Lopezdominguez
description Mental model representation using fuzzy graphs have recently grown in popularity for decision support and knowledge representation. Finding the most important node in the model has multiple applications. This paper presents a new model for static analysis in fuzzy graphs applied to the learning process. It makes use WA operators for the aggregation of the different centrality measures. This composite measure make possible to order the nodes and select the most important in a more integral way. WA operator brings flexibility to the model. A case study to show the applicability of the proposal is presented.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835560119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835560119</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18355601193</originalsourceid><addsrcrecordid>eNqVjLEKwjAURYMoKOo_vNFFTFpb6lhEcVBwcBOR0LxqJObVvjoo-O9a7ODqdO9wzmmJXiCDZDwLg2n753fFkPkipVThVCVx3BOv1Gtn2TIYhA0ZdMSwQV9phwxp4WymDYF2sC0pQ6aaS4sSvbFPfcHJHurCoy5Q3pjfUK1_fDRQEVRnhDXq0lt_alIMh4Ho5NoxDpvti9FysZuvxkVJtztydbxaztA57ZHufFRJGEWxVGoW_oG-AZHxVD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835560119</pqid></control><display><type>article</type><title>Analisis de Modelos Mentales Aplicado al Proceso de Aprendizaje/[ Analysis of Mental Models Applied to the Learning Process ]</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Colombo, Katya Martha Faggioni ; Villagomez, Mario Mata ; Granda, Julio Bruce Novillo ; Rivas, Fabiola Rosa Lopezdominguez</creator><creatorcontrib>Colombo, Katya Martha Faggioni ; Villagomez, Mario Mata ; Granda, Julio Bruce Novillo ; Rivas, Fabiola Rosa Lopezdominguez</creatorcontrib><description>Mental model representation using fuzzy graphs have recently grown in popularity for decision support and knowledge representation. Finding the most important node in the model has multiple applications. This paper presents a new model for static analysis in fuzzy graphs applied to the learning process. It makes use WA operators for the aggregation of the different centrality measures. This composite measure make possible to order the nodes and select the most important in a more integral way. WA operator brings flexibility to the model. A case study to show the applicability of the proposal is presented.</description><identifier>ISSN: 2028-9324</identifier><identifier>EISSN: 2028-9324</identifier><language>eng</language><subject>Agglomeration ; Flexibility ; Fuzzy ; Graphs ; Integrals ; Learning ; Operators ; Proposals</subject><ispartof>International journal of innovation and applied studies, 2016-06, Vol.16 (3), p.528-528</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Colombo, Katya Martha Faggioni</creatorcontrib><creatorcontrib>Villagomez, Mario Mata</creatorcontrib><creatorcontrib>Granda, Julio Bruce Novillo</creatorcontrib><creatorcontrib>Rivas, Fabiola Rosa Lopezdominguez</creatorcontrib><title>Analisis de Modelos Mentales Aplicado al Proceso de Aprendizaje/[ Analysis of Mental Models Applied to the Learning Process ]</title><title>International journal of innovation and applied studies</title><description>Mental model representation using fuzzy graphs have recently grown in popularity for decision support and knowledge representation. Finding the most important node in the model has multiple applications. This paper presents a new model for static analysis in fuzzy graphs applied to the learning process. It makes use WA operators for the aggregation of the different centrality measures. This composite measure make possible to order the nodes and select the most important in a more integral way. WA operator brings flexibility to the model. A case study to show the applicability of the proposal is presented.</description><subject>Agglomeration</subject><subject>Flexibility</subject><subject>Fuzzy</subject><subject>Graphs</subject><subject>Integrals</subject><subject>Learning</subject><subject>Operators</subject><subject>Proposals</subject><issn>2028-9324</issn><issn>2028-9324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVjLEKwjAURYMoKOo_vNFFTFpb6lhEcVBwcBOR0LxqJObVvjoo-O9a7ODqdO9wzmmJXiCDZDwLg2n753fFkPkipVThVCVx3BOv1Gtn2TIYhA0ZdMSwQV9phwxp4WymDYF2sC0pQ6aaS4sSvbFPfcHJHurCoy5Q3pjfUK1_fDRQEVRnhDXq0lt_alIMh4Ho5NoxDpvti9FysZuvxkVJtztydbxaztA57ZHufFRJGEWxVGoW_oG-AZHxVD0</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Colombo, Katya Martha Faggioni</creator><creator>Villagomez, Mario Mata</creator><creator>Granda, Julio Bruce Novillo</creator><creator>Rivas, Fabiola Rosa Lopezdominguez</creator><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160601</creationdate><title>Analisis de Modelos Mentales Aplicado al Proceso de Aprendizaje/[ Analysis of Mental Models Applied to the Learning Process ]</title><author>Colombo, Katya Martha Faggioni ; Villagomez, Mario Mata ; Granda, Julio Bruce Novillo ; Rivas, Fabiola Rosa Lopezdominguez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18355601193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agglomeration</topic><topic>Flexibility</topic><topic>Fuzzy</topic><topic>Graphs</topic><topic>Integrals</topic><topic>Learning</topic><topic>Operators</topic><topic>Proposals</topic><toplevel>online_resources</toplevel><creatorcontrib>Colombo, Katya Martha Faggioni</creatorcontrib><creatorcontrib>Villagomez, Mario Mata</creatorcontrib><creatorcontrib>Granda, Julio Bruce Novillo</creatorcontrib><creatorcontrib>Rivas, Fabiola Rosa Lopezdominguez</creatorcontrib><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>International journal of innovation and applied studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombo, Katya Martha Faggioni</au><au>Villagomez, Mario Mata</au><au>Granda, Julio Bruce Novillo</au><au>Rivas, Fabiola Rosa Lopezdominguez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analisis de Modelos Mentales Aplicado al Proceso de Aprendizaje/[ Analysis of Mental Models Applied to the Learning Process ]</atitle><jtitle>International journal of innovation and applied studies</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>16</volume><issue>3</issue><spage>528</spage><epage>528</epage><pages>528-528</pages><issn>2028-9324</issn><eissn>2028-9324</eissn><abstract>Mental model representation using fuzzy graphs have recently grown in popularity for decision support and knowledge representation. Finding the most important node in the model has multiple applications. This paper presents a new model for static analysis in fuzzy graphs applied to the learning process. It makes use WA operators for the aggregation of the different centrality measures. This composite measure make possible to order the nodes and select the most important in a more integral way. WA operator brings flexibility to the model. A case study to show the applicability of the proposal is presented.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 2028-9324
ispartof International journal of innovation and applied studies, 2016-06, Vol.16 (3), p.528-528
issn 2028-9324
2028-9324
language eng
recordid cdi_proquest_miscellaneous_1835560119
source EZB-FREE-00999 freely available EZB journals
subjects Agglomeration
Flexibility
Fuzzy
Graphs
Integrals
Learning
Operators
Proposals
title Analisis de Modelos Mentales Aplicado al Proceso de Aprendizaje/[ Analysis of Mental Models Applied to the Learning Process ]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analisis%20de%20Modelos%20Mentales%20Aplicado%20al%20Proceso%20de%20Aprendizaje/%5B%20Analysis%20of%20Mental%20Models%20Applied%20to%20the%20Learning%20Process%20%5D&rft.jtitle=International%20journal%20of%20innovation%20and%20applied%20studies&rft.au=Colombo,%20Katya%20Martha%20Faggioni&rft.date=2016-06-01&rft.volume=16&rft.issue=3&rft.spage=528&rft.epage=528&rft.pages=528-528&rft.issn=2028-9324&rft.eissn=2028-9324&rft_id=info:doi/&rft_dat=%3Cproquest%3E1835560119%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835560119&rft_id=info:pmid/&rfr_iscdi=true