The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation

Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2016-11, Vol.64 (3), p.467-479
Hauptverfasser: Grüner, Stefan, Peter, Daniel, Weber, Ramona, Wohlbold, Lara, Chung, Min-Yi, Weichenrieder, Oliver, Valkov, Eugene, Igreja, Cátia, Izaurralde, Elisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 3
container_start_page 467
container_title Molecular cell
container_volume 64
creator Grüner, Stefan
Peter, Daniel
Weber, Ramona
Wohlbold, Lara
Chung, Min-Yi
Weichenrieder, Oliver
Valkov, Eugene
Igreja, Cátia
Izaurralde, Elisa
description Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease. [Display omitted] •Crystal structures of eIF4E-eIF4G complexes reveal lateral contacts on eIF4E•Structural similarity of eIF4G and 4E-BPs extends to the lateral contacts with eIF4E•Stronger lateral binding of inhibitory 4E-BPs helps them to displace eIF4G from eIF4E•Structural model for the design of translational inhibitors as therapeutic tools The interaction of eukaryotic translation initiation factors eIF4G and eIF4E is crucial for translation and a key target for synthetic drug design. Grüner et al. determined crystal structures of metazoan eIF4E-eIF4G complexes revealing extended similarity to inhibitory eIF4E-4E-BP complexes and challenging previous models obtained from yeast homologs.
doi_str_mv 10.1016/j.molcel.2016.09.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835538937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727651630569X</els_id><sourcerecordid>1835538937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2a606828c4962ae82f79cc5e82594c018792e81aacda62ee34f10d80de81ec93</originalsourceid><addsrcrecordid>eNp9kM1uGyEURlHVqEmTvkEUsexmpsAw_GwqVZbjWIoUKfEeEeaOizUzuMBE7tsXx26X3cAH91yuOAjdUlJTQsW3XT2GwcFQs3Kqia4JIx_QFSVaVpwK_vGcmRTtJfqc0o4QylulP6FLJqVshBRXaLv5Cfglx9nlOULCocewvufL6riu8CKM-wEOpfAMb2AHbCe8PGSYOujwesoQe-sA51Dq23mwGfAm2imV5MNUCJ_9e7xBF70dEnw579doc7_cLB6qx6fVevHjsXKcqFwxK4hQTDmuBbOgWC-1c20JreaOUCU1A0WtdZ0VDKDhPSWdIl25BKeba_T19Ow-hl8zpGxGn4qkwU4Q5mSoatq2UbqRBeUn1MWQUoTe7KMfbfxtKDFHw2ZnTobN0bAh2hTDpe3uPGF-HaH71_RXaQG-nwAo33zzEE1yHiYHnY_gsumC__-EP0jKjkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835538937</pqid></control><display><type>article</type><title>The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Grüner, Stefan ; Peter, Daniel ; Weber, Ramona ; Wohlbold, Lara ; Chung, Min-Yi ; Weichenrieder, Oliver ; Valkov, Eugene ; Igreja, Cátia ; Izaurralde, Elisa</creator><creatorcontrib>Grüner, Stefan ; Peter, Daniel ; Weber, Ramona ; Wohlbold, Lara ; Chung, Min-Yi ; Weichenrieder, Oliver ; Valkov, Eugene ; Igreja, Cátia ; Izaurralde, Elisa</creatorcontrib><description>Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease. [Display omitted] •Crystal structures of eIF4E-eIF4G complexes reveal lateral contacts on eIF4E•Structural similarity of eIF4G and 4E-BPs extends to the lateral contacts with eIF4E•Stronger lateral binding of inhibitory 4E-BPs helps them to displace eIF4G from eIF4E•Structural model for the design of translational inhibitors as therapeutic tools The interaction of eukaryotic translation initiation factors eIF4G and eIF4E is crucial for translation and a key target for synthetic drug design. Grüner et al. determined crystal structures of metazoan eIF4E-eIF4G complexes revealing extended similarity to inhibitory eIF4E-4E-BP complexes and challenging previous models obtained from yeast homologs.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.09.020</identifier><identifier>PMID: 27773676</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>4E-BP ; Amino Acid Sequence ; Animals ; Binding Sites ; Cloning, Molecular ; Crystallography, X-Ray ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; eIF4F ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Eukaryotic Initiation Factor-4E - chemistry ; Eukaryotic Initiation Factor-4E - genetics ; Eukaryotic Initiation Factor-4E - metabolism ; Eukaryotic Initiation Factor-4G - chemistry ; Eukaryotic Initiation Factor-4G - genetics ; Eukaryotic Initiation Factor-4G - metabolism ; Gene Expression ; Humans ; Kinetics ; Models, Molecular ; Mutation ; Peptide Chain Initiation, Translational ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; protein-protein interaction ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; Thermodynamics ; translation initiation ; translational inhibitors ; translational regulation</subject><ispartof>Molecular cell, 2016-11, Vol.64 (3), p.467-479</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2a606828c4962ae82f79cc5e82594c018792e81aacda62ee34f10d80de81ec93</citedby><cites>FETCH-LOGICAL-c408t-2a606828c4962ae82f79cc5e82594c018792e81aacda62ee34f10d80de81ec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2016.09.020$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27773676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grüner, Stefan</creatorcontrib><creatorcontrib>Peter, Daniel</creatorcontrib><creatorcontrib>Weber, Ramona</creatorcontrib><creatorcontrib>Wohlbold, Lara</creatorcontrib><creatorcontrib>Chung, Min-Yi</creatorcontrib><creatorcontrib>Weichenrieder, Oliver</creatorcontrib><creatorcontrib>Valkov, Eugene</creatorcontrib><creatorcontrib>Igreja, Cátia</creatorcontrib><creatorcontrib>Izaurralde, Elisa</creatorcontrib><title>The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease. [Display omitted] •Crystal structures of eIF4E-eIF4G complexes reveal lateral contacts on eIF4E•Structural similarity of eIF4G and 4E-BPs extends to the lateral contacts with eIF4E•Stronger lateral binding of inhibitory 4E-BPs helps them to displace eIF4G from eIF4E•Structural model for the design of translational inhibitors as therapeutic tools The interaction of eukaryotic translation initiation factors eIF4G and eIF4E is crucial for translation and a key target for synthetic drug design. Grüner et al. determined crystal structures of metazoan eIF4E-eIF4G complexes revealing extended similarity to inhibitory eIF4E-4E-BP complexes and challenging previous models obtained from yeast homologs.</description><subject>4E-BP</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>eIF4F</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Eukaryotic Initiation Factor-4E - chemistry</subject><subject>Eukaryotic Initiation Factor-4E - genetics</subject><subject>Eukaryotic Initiation Factor-4E - metabolism</subject><subject>Eukaryotic Initiation Factor-4G - chemistry</subject><subject>Eukaryotic Initiation Factor-4G - genetics</subject><subject>Eukaryotic Initiation Factor-4G - metabolism</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Peptide Chain Initiation, Translational</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>protein-protein interaction</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Thermodynamics</subject><subject>translation initiation</subject><subject>translational inhibitors</subject><subject>translational regulation</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1uGyEURlHVqEmTvkEUsexmpsAw_GwqVZbjWIoUKfEeEeaOizUzuMBE7tsXx26X3cAH91yuOAjdUlJTQsW3XT2GwcFQs3Kqia4JIx_QFSVaVpwK_vGcmRTtJfqc0o4QylulP6FLJqVshBRXaLv5Cfglx9nlOULCocewvufL6riu8CKM-wEOpfAMb2AHbCe8PGSYOujwesoQe-sA51Dq23mwGfAm2imV5MNUCJ_9e7xBF70dEnw579doc7_cLB6qx6fVevHjsXKcqFwxK4hQTDmuBbOgWC-1c20JreaOUCU1A0WtdZ0VDKDhPSWdIl25BKeba_T19Ow-hl8zpGxGn4qkwU4Q5mSoatq2UbqRBeUn1MWQUoTe7KMfbfxtKDFHw2ZnTobN0bAh2hTDpe3uPGF-HaH71_RXaQG-nwAo33zzEE1yHiYHnY_gsumC__-EP0jKjkY</recordid><startdate>20161103</startdate><enddate>20161103</enddate><creator>Grüner, Stefan</creator><creator>Peter, Daniel</creator><creator>Weber, Ramona</creator><creator>Wohlbold, Lara</creator><creator>Chung, Min-Yi</creator><creator>Weichenrieder, Oliver</creator><creator>Valkov, Eugene</creator><creator>Igreja, Cátia</creator><creator>Izaurralde, Elisa</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161103</creationdate><title>The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation</title><author>Grüner, Stefan ; Peter, Daniel ; Weber, Ramona ; Wohlbold, Lara ; Chung, Min-Yi ; Weichenrieder, Oliver ; Valkov, Eugene ; Igreja, Cátia ; Izaurralde, Elisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2a606828c4962ae82f79cc5e82594c018792e81aacda62ee34f10d80de81ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>4E-BP</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>eIF4F</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Eukaryotic Initiation Factor-4E - chemistry</topic><topic>Eukaryotic Initiation Factor-4E - genetics</topic><topic>Eukaryotic Initiation Factor-4E - metabolism</topic><topic>Eukaryotic Initiation Factor-4G - chemistry</topic><topic>Eukaryotic Initiation Factor-4G - genetics</topic><topic>Eukaryotic Initiation Factor-4G - metabolism</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Peptide Chain Initiation, Translational</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>protein-protein interaction</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Thermodynamics</topic><topic>translation initiation</topic><topic>translational inhibitors</topic><topic>translational regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grüner, Stefan</creatorcontrib><creatorcontrib>Peter, Daniel</creatorcontrib><creatorcontrib>Weber, Ramona</creatorcontrib><creatorcontrib>Wohlbold, Lara</creatorcontrib><creatorcontrib>Chung, Min-Yi</creatorcontrib><creatorcontrib>Weichenrieder, Oliver</creatorcontrib><creatorcontrib>Valkov, Eugene</creatorcontrib><creatorcontrib>Igreja, Cátia</creatorcontrib><creatorcontrib>Izaurralde, Elisa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grüner, Stefan</au><au>Peter, Daniel</au><au>Weber, Ramona</au><au>Wohlbold, Lara</au><au>Chung, Min-Yi</au><au>Weichenrieder, Oliver</au><au>Valkov, Eugene</au><au>Igreja, Cátia</au><au>Izaurralde, Elisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-11-03</date><risdate>2016</risdate><volume>64</volume><issue>3</issue><spage>467</spage><epage>479</epage><pages>467-479</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease. [Display omitted] •Crystal structures of eIF4E-eIF4G complexes reveal lateral contacts on eIF4E•Structural similarity of eIF4G and 4E-BPs extends to the lateral contacts with eIF4E•Stronger lateral binding of inhibitory 4E-BPs helps them to displace eIF4G from eIF4E•Structural model for the design of translational inhibitors as therapeutic tools The interaction of eukaryotic translation initiation factors eIF4G and eIF4E is crucial for translation and a key target for synthetic drug design. Grüner et al. determined crystal structures of metazoan eIF4E-eIF4G complexes revealing extended similarity to inhibitory eIF4E-4E-BP complexes and challenging previous models obtained from yeast homologs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27773676</pmid><doi>10.1016/j.molcel.2016.09.020</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2016-11, Vol.64 (3), p.467-479
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_1835538937
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry
subjects 4E-BP
Amino Acid Sequence
Animals
Binding Sites
Cloning, Molecular
Crystallography, X-Ray
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
eIF4F
Escherichia coli - genetics
Escherichia coli - metabolism
Eukaryotic Initiation Factor-4E - chemistry
Eukaryotic Initiation Factor-4E - genetics
Eukaryotic Initiation Factor-4E - metabolism
Eukaryotic Initiation Factor-4G - chemistry
Eukaryotic Initiation Factor-4G - genetics
Eukaryotic Initiation Factor-4G - metabolism
Gene Expression
Humans
Kinetics
Models, Molecular
Mutation
Peptide Chain Initiation, Translational
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Interaction Domains and Motifs
protein-protein interaction
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sequence Alignment
Sequence Homology, Amino Acid
Thermodynamics
translation initiation
translational inhibitors
translational regulation
title The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structures%20of%20eIF4E-eIF4G%20Complexes%20Reveal%20an%20Extended%20Interface%20to%20Regulate%20Translation%20Initiation&rft.jtitle=Molecular%20cell&rft.au=Gr%C3%BCner,%20Stefan&rft.date=2016-11-03&rft.volume=64&rft.issue=3&rft.spage=467&rft.epage=479&rft.pages=467-479&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.09.020&rft_dat=%3Cproquest_cross%3E1835538937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835538937&rft_id=info:pmid/27773676&rft_els_id=S109727651630569X&rfr_iscdi=true