The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation
Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2016-11, Vol.64 (3), p.467-479 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 479 |
---|---|
container_issue | 3 |
container_start_page | 467 |
container_title | Molecular cell |
container_volume | 64 |
creator | Grüner, Stefan Peter, Daniel Weber, Ramona Wohlbold, Lara Chung, Min-Yi Weichenrieder, Oliver Valkov, Eugene Igreja, Cátia Izaurralde, Elisa |
description | Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease.
[Display omitted]
•Crystal structures of eIF4E-eIF4G complexes reveal lateral contacts on eIF4E•Structural similarity of eIF4G and 4E-BPs extends to the lateral contacts with eIF4E•Stronger lateral binding of inhibitory 4E-BPs helps them to displace eIF4G from eIF4E•Structural model for the design of translational inhibitors as therapeutic tools
The interaction of eukaryotic translation initiation factors eIF4G and eIF4E is crucial for translation and a key target for synthetic drug design. Grüner et al. determined crystal structures of metazoan eIF4E-eIF4G complexes revealing extended similarity to inhibitory eIF4E-4E-BP complexes and challenging previous models obtained from yeast homologs. |
doi_str_mv | 10.1016/j.molcel.2016.09.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835538937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S109727651630569X</els_id><sourcerecordid>1835538937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2a606828c4962ae82f79cc5e82594c018792e81aacda62ee34f10d80de81ec93</originalsourceid><addsrcrecordid>eNp9kM1uGyEURlHVqEmTvkEUsexmpsAw_GwqVZbjWIoUKfEeEeaOizUzuMBE7tsXx26X3cAH91yuOAjdUlJTQsW3XT2GwcFQs3Kqia4JIx_QFSVaVpwK_vGcmRTtJfqc0o4QylulP6FLJqVshBRXaLv5Cfglx9nlOULCocewvufL6riu8CKM-wEOpfAMb2AHbCe8PGSYOujwesoQe-sA51Dq23mwGfAm2imV5MNUCJ_9e7xBF70dEnw579doc7_cLB6qx6fVevHjsXKcqFwxK4hQTDmuBbOgWC-1c20JreaOUCU1A0WtdZ0VDKDhPSWdIl25BKeba_T19Ow-hl8zpGxGn4qkwU4Q5mSoatq2UbqRBeUn1MWQUoTe7KMfbfxtKDFHw2ZnTobN0bAh2hTDpe3uPGF-HaH71_RXaQG-nwAo33zzEE1yHiYHnY_gsumC__-EP0jKjkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835538937</pqid></control><display><type>article</type><title>The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Grüner, Stefan ; Peter, Daniel ; Weber, Ramona ; Wohlbold, Lara ; Chung, Min-Yi ; Weichenrieder, Oliver ; Valkov, Eugene ; Igreja, Cátia ; Izaurralde, Elisa</creator><creatorcontrib>Grüner, Stefan ; Peter, Daniel ; Weber, Ramona ; Wohlbold, Lara ; Chung, Min-Yi ; Weichenrieder, Oliver ; Valkov, Eugene ; Igreja, Cátia ; Izaurralde, Elisa</creatorcontrib><description>Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease.
[Display omitted]
•Crystal structures of eIF4E-eIF4G complexes reveal lateral contacts on eIF4E•Structural similarity of eIF4G and 4E-BPs extends to the lateral contacts with eIF4E•Stronger lateral binding of inhibitory 4E-BPs helps them to displace eIF4G from eIF4E•Structural model for the design of translational inhibitors as therapeutic tools
The interaction of eukaryotic translation initiation factors eIF4G and eIF4E is crucial for translation and a key target for synthetic drug design. Grüner et al. determined crystal structures of metazoan eIF4E-eIF4G complexes revealing extended similarity to inhibitory eIF4E-4E-BP complexes and challenging previous models obtained from yeast homologs.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.09.020</identifier><identifier>PMID: 27773676</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>4E-BP ; Amino Acid Sequence ; Animals ; Binding Sites ; Cloning, Molecular ; Crystallography, X-Ray ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; eIF4F ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Eukaryotic Initiation Factor-4E - chemistry ; Eukaryotic Initiation Factor-4E - genetics ; Eukaryotic Initiation Factor-4E - metabolism ; Eukaryotic Initiation Factor-4G - chemistry ; Eukaryotic Initiation Factor-4G - genetics ; Eukaryotic Initiation Factor-4G - metabolism ; Gene Expression ; Humans ; Kinetics ; Models, Molecular ; Mutation ; Peptide Chain Initiation, Translational ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; Protein Interaction Domains and Motifs ; protein-protein interaction ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; Thermodynamics ; translation initiation ; translational inhibitors ; translational regulation</subject><ispartof>Molecular cell, 2016-11, Vol.64 (3), p.467-479</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2a606828c4962ae82f79cc5e82594c018792e81aacda62ee34f10d80de81ec93</citedby><cites>FETCH-LOGICAL-c408t-2a606828c4962ae82f79cc5e82594c018792e81aacda62ee34f10d80de81ec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2016.09.020$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27773676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grüner, Stefan</creatorcontrib><creatorcontrib>Peter, Daniel</creatorcontrib><creatorcontrib>Weber, Ramona</creatorcontrib><creatorcontrib>Wohlbold, Lara</creatorcontrib><creatorcontrib>Chung, Min-Yi</creatorcontrib><creatorcontrib>Weichenrieder, Oliver</creatorcontrib><creatorcontrib>Valkov, Eugene</creatorcontrib><creatorcontrib>Igreja, Cátia</creatorcontrib><creatorcontrib>Izaurralde, Elisa</creatorcontrib><title>The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease.
[Display omitted]
•Crystal structures of eIF4E-eIF4G complexes reveal lateral contacts on eIF4E•Structural similarity of eIF4G and 4E-BPs extends to the lateral contacts with eIF4E•Stronger lateral binding of inhibitory 4E-BPs helps them to displace eIF4G from eIF4E•Structural model for the design of translational inhibitors as therapeutic tools
The interaction of eukaryotic translation initiation factors eIF4G and eIF4E is crucial for translation and a key target for synthetic drug design. Grüner et al. determined crystal structures of metazoan eIF4E-eIF4G complexes revealing extended similarity to inhibitory eIF4E-4E-BP complexes and challenging previous models obtained from yeast homologs.</description><subject>4E-BP</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Cloning, Molecular</subject><subject>Crystallography, X-Ray</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>eIF4F</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Eukaryotic Initiation Factor-4E - chemistry</subject><subject>Eukaryotic Initiation Factor-4E - genetics</subject><subject>Eukaryotic Initiation Factor-4E - metabolism</subject><subject>Eukaryotic Initiation Factor-4G - chemistry</subject><subject>Eukaryotic Initiation Factor-4G - genetics</subject><subject>Eukaryotic Initiation Factor-4G - metabolism</subject><subject>Gene Expression</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Peptide Chain Initiation, Translational</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>Protein Interaction Domains and Motifs</subject><subject>protein-protein interaction</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Thermodynamics</subject><subject>translation initiation</subject><subject>translational inhibitors</subject><subject>translational regulation</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1uGyEURlHVqEmTvkEUsexmpsAw_GwqVZbjWIoUKfEeEeaOizUzuMBE7tsXx26X3cAH91yuOAjdUlJTQsW3XT2GwcFQs3Kqia4JIx_QFSVaVpwK_vGcmRTtJfqc0o4QylulP6FLJqVshBRXaLv5Cfglx9nlOULCocewvufL6riu8CKM-wEOpfAMb2AHbCe8PGSYOujwesoQe-sA51Dq23mwGfAm2imV5MNUCJ_9e7xBF70dEnw579doc7_cLB6qx6fVevHjsXKcqFwxK4hQTDmuBbOgWC-1c20JreaOUCU1A0WtdZ0VDKDhPSWdIl25BKeba_T19Ow-hl8zpGxGn4qkwU4Q5mSoatq2UbqRBeUn1MWQUoTe7KMfbfxtKDFHw2ZnTobN0bAh2hTDpe3uPGF-HaH71_RXaQG-nwAo33zzEE1yHiYHnY_gsumC__-EP0jKjkY</recordid><startdate>20161103</startdate><enddate>20161103</enddate><creator>Grüner, Stefan</creator><creator>Peter, Daniel</creator><creator>Weber, Ramona</creator><creator>Wohlbold, Lara</creator><creator>Chung, Min-Yi</creator><creator>Weichenrieder, Oliver</creator><creator>Valkov, Eugene</creator><creator>Igreja, Cátia</creator><creator>Izaurralde, Elisa</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161103</creationdate><title>The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation</title><author>Grüner, Stefan ; Peter, Daniel ; Weber, Ramona ; Wohlbold, Lara ; Chung, Min-Yi ; Weichenrieder, Oliver ; Valkov, Eugene ; Igreja, Cátia ; Izaurralde, Elisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2a606828c4962ae82f79cc5e82594c018792e81aacda62ee34f10d80de81ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>4E-BP</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Cloning, Molecular</topic><topic>Crystallography, X-Ray</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>eIF4F</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Eukaryotic Initiation Factor-4E - chemistry</topic><topic>Eukaryotic Initiation Factor-4E - genetics</topic><topic>Eukaryotic Initiation Factor-4E - metabolism</topic><topic>Eukaryotic Initiation Factor-4G - chemistry</topic><topic>Eukaryotic Initiation Factor-4G - genetics</topic><topic>Eukaryotic Initiation Factor-4G - metabolism</topic><topic>Gene Expression</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Peptide Chain Initiation, Translational</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>Protein Interaction Domains and Motifs</topic><topic>protein-protein interaction</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Thermodynamics</topic><topic>translation initiation</topic><topic>translational inhibitors</topic><topic>translational regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grüner, Stefan</creatorcontrib><creatorcontrib>Peter, Daniel</creatorcontrib><creatorcontrib>Weber, Ramona</creatorcontrib><creatorcontrib>Wohlbold, Lara</creatorcontrib><creatorcontrib>Chung, Min-Yi</creatorcontrib><creatorcontrib>Weichenrieder, Oliver</creatorcontrib><creatorcontrib>Valkov, Eugene</creatorcontrib><creatorcontrib>Igreja, Cátia</creatorcontrib><creatorcontrib>Izaurralde, Elisa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grüner, Stefan</au><au>Peter, Daniel</au><au>Weber, Ramona</au><au>Wohlbold, Lara</au><au>Chung, Min-Yi</au><au>Weichenrieder, Oliver</au><au>Valkov, Eugene</au><au>Igreja, Cátia</au><au>Izaurralde, Elisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-11-03</date><risdate>2016</risdate><volume>64</volume><issue>3</issue><spage>467</spage><epage>479</epage><pages>467-479</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Eukaryotic initiation factor 4G (eIF4G) plays a central role in translation initiation through its interactions with the cap-binding protein eIF4E. This interaction is a major drug target for repressing translation and is naturally regulated by 4E-binding proteins (4E-BPs). 4E-BPs and eIF4G compete for binding to the eIF4E dorsal surface via a shared canonical 4E-binding motif, but also contain auxiliary eIF4E-binding sequences, which were assumed to contact non-overlapping eIF4E surfaces. However, it is unknown how metazoan eIF4G auxiliary sequences bind eIF4E. Here, we describe crystal structures of human and Drosophila melanogaster eIF4E-eIF4G complexes, which unexpectedly reveal that the eIF4G auxiliary sequences bind to the lateral surface of eIF4E, using a similar mode to that of 4E-BPs. Our studies provide a molecular model of the eIF4E-eIF4G complex, shed light on the competition mechanism of 4E-BPs, and enable the rational design of selective eIF4G inhibitors to dampen dysregulated translation in disease.
[Display omitted]
•Crystal structures of eIF4E-eIF4G complexes reveal lateral contacts on eIF4E•Structural similarity of eIF4G and 4E-BPs extends to the lateral contacts with eIF4E•Stronger lateral binding of inhibitory 4E-BPs helps them to displace eIF4G from eIF4E•Structural model for the design of translational inhibitors as therapeutic tools
The interaction of eukaryotic translation initiation factors eIF4G and eIF4E is crucial for translation and a key target for synthetic drug design. Grüner et al. determined crystal structures of metazoan eIF4E-eIF4G complexes revealing extended similarity to inhibitory eIF4E-4E-BP complexes and challenging previous models obtained from yeast homologs.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27773676</pmid><doi>10.1016/j.molcel.2016.09.020</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2016-11, Vol.64 (3), p.467-479 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835538937 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry |
subjects | 4E-BP Amino Acid Sequence Animals Binding Sites Cloning, Molecular Crystallography, X-Ray Drosophila melanogaster - genetics Drosophila melanogaster - metabolism eIF4F Escherichia coli - genetics Escherichia coli - metabolism Eukaryotic Initiation Factor-4E - chemistry Eukaryotic Initiation Factor-4E - genetics Eukaryotic Initiation Factor-4E - metabolism Eukaryotic Initiation Factor-4G - chemistry Eukaryotic Initiation Factor-4G - genetics Eukaryotic Initiation Factor-4G - metabolism Gene Expression Humans Kinetics Models, Molecular Mutation Peptide Chain Initiation, Translational Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand Protein Interaction Domains and Motifs protein-protein interaction Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Sequence Alignment Sequence Homology, Amino Acid Thermodynamics translation initiation translational inhibitors translational regulation |
title | The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structures%20of%20eIF4E-eIF4G%20Complexes%20Reveal%20an%20Extended%20Interface%20to%20Regulate%20Translation%20Initiation&rft.jtitle=Molecular%20cell&rft.au=Gr%C3%BCner,%20Stefan&rft.date=2016-11-03&rft.volume=64&rft.issue=3&rft.spage=467&rft.epage=479&rft.pages=467-479&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.09.020&rft_dat=%3Cproquest_cross%3E1835538937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835538937&rft_id=info:pmid/27773676&rft_els_id=S109727651630569X&rfr_iscdi=true |