Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer
We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a serie...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-11, Vol.8 (43), p.29658-29667 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29667 |
---|---|
container_issue | 43 |
container_start_page | 29658 |
container_title | ACS applied materials & interfaces |
container_volume | 8 |
creator | Glugla, David J Alim, Marvin D Byars, Keaton D Nair, Devatha P Bowman, Christopher N Maute, Kurt K McLeod, Robert R |
description | We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight. |
doi_str_mv | 10.1021/acsami.6b08981 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835535379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835535379</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-652c2b54c8a205779dbb51db2e4b7f6e1513cea40ea4ae66e169df8226e80bfd3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEYmNw5YhyREgdSdr044gGA6RJm9g4cajSxi2Z2qYkLWj_nkwdu3GwbNmPX9kvQteUTClh9F7kVtRqGmYkTmJ6gsY0CQIvZpydHusgGKELa7eEhD4j_ByNWBQTFhI-Rh9vqlQSL40qnQ7-VgIv207losIro0sj6lo1JRaNxI9QgDEg8RqqwpvrSu4nusACb360t-5ECXj1qTvd6mpXg7lEZ4WoLFwd8gS9z582sxdvsXx-nT0sPOH7pPNCznKW8SCPhbsuihKZZZzKjEGQRUUIlFM_BxEQFwJC1wgTWcSMhRCTrJD-BN0Ouq3RXz3YLq2VzaGqRAO6tymNfc597keJQ6cDmhttrYEibY2qhdmllKR7Q9PB0PRgqFu4OWj3WQ3yiP856IC7AXCL6Vb3pnGv_qf2Cz8cgG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835535379</pqid></control><display><type>article</type><title>Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer</title><source>ACS Publications</source><creator>Glugla, David J ; Alim, Marvin D ; Byars, Keaton D ; Nair, Devatha P ; Bowman, Christopher N ; Maute, Kurt K ; McLeod, Robert R</creator><creatorcontrib>Glugla, David J ; Alim, Marvin D ; Byars, Keaton D ; Nair, Devatha P ; Bowman, Christopher N ; Maute, Kurt K ; McLeod, Robert R</creatorcontrib><description>We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b08981</identifier><identifier>PMID: 27802605</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2016-11, Vol.8 (43), p.29658-29667</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-652c2b54c8a205779dbb51db2e4b7f6e1513cea40ea4ae66e169df8226e80bfd3</citedby><cites>FETCH-LOGICAL-a330t-652c2b54c8a205779dbb51db2e4b7f6e1513cea40ea4ae66e169df8226e80bfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b08981$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b08981$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27802605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glugla, David J</creatorcontrib><creatorcontrib>Alim, Marvin D</creatorcontrib><creatorcontrib>Byars, Keaton D</creatorcontrib><creatorcontrib>Nair, Devatha P</creatorcontrib><creatorcontrib>Bowman, Christopher N</creatorcontrib><creatorcontrib>Maute, Kurt K</creatorcontrib><creatorcontrib>McLeod, Robert R</creatorcontrib><title>Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEYmNw5YhyREgdSdr044gGA6RJm9g4cajSxi2Z2qYkLWj_nkwdu3GwbNmPX9kvQteUTClh9F7kVtRqGmYkTmJ6gsY0CQIvZpydHusgGKELa7eEhD4j_ByNWBQTFhI-Rh9vqlQSL40qnQ7-VgIv207losIro0sj6lo1JRaNxI9QgDEg8RqqwpvrSu4nusACb360t-5ECXj1qTvd6mpXg7lEZ4WoLFwd8gS9z582sxdvsXx-nT0sPOH7pPNCznKW8SCPhbsuihKZZZzKjEGQRUUIlFM_BxEQFwJC1wgTWcSMhRCTrJD-BN0Ouq3RXz3YLq2VzaGqRAO6tymNfc597keJQ6cDmhttrYEibY2qhdmllKR7Q9PB0PRgqFu4OWj3WQ3yiP856IC7AXCL6Vb3pnGv_qf2Cz8cgG8</recordid><startdate>20161102</startdate><enddate>20161102</enddate><creator>Glugla, David J</creator><creator>Alim, Marvin D</creator><creator>Byars, Keaton D</creator><creator>Nair, Devatha P</creator><creator>Bowman, Christopher N</creator><creator>Maute, Kurt K</creator><creator>McLeod, Robert R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161102</creationdate><title>Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer</title><author>Glugla, David J ; Alim, Marvin D ; Byars, Keaton D ; Nair, Devatha P ; Bowman, Christopher N ; Maute, Kurt K ; McLeod, Robert R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-652c2b54c8a205779dbb51db2e4b7f6e1513cea40ea4ae66e169df8226e80bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glugla, David J</creatorcontrib><creatorcontrib>Alim, Marvin D</creatorcontrib><creatorcontrib>Byars, Keaton D</creatorcontrib><creatorcontrib>Nair, Devatha P</creatorcontrib><creatorcontrib>Bowman, Christopher N</creatorcontrib><creatorcontrib>Maute, Kurt K</creatorcontrib><creatorcontrib>McLeod, Robert R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glugla, David J</au><au>Alim, Marvin D</au><au>Byars, Keaton D</au><au>Nair, Devatha P</au><au>Bowman, Christopher N</au><au>Maute, Kurt K</au><au>McLeod, Robert R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-11-02</date><risdate>2016</risdate><volume>8</volume><issue>43</issue><spage>29658</spage><epage>29667</epage><pages>29658-29667</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27802605</pmid><doi>10.1021/acsami.6b08981</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2016-11, Vol.8 (43), p.29658-29667 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835535379 |
source | ACS Publications |
title | Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigid%20Origami%20via%20Optical%20Programming%20and%20Deferred%20Self-Folding%20of%20a%20Two-Stage%20Photopolymer&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Glugla,%20David%20J&rft.date=2016-11-02&rft.volume=8&rft.issue=43&rft.spage=29658&rft.epage=29667&rft.pages=29658-29667&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b08981&rft_dat=%3Cproquest_cross%3E1835535379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835535379&rft_id=info:pmid/27802605&rfr_iscdi=true |