Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer

We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a serie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-11, Vol.8 (43), p.29658-29667
Hauptverfasser: Glugla, David J, Alim, Marvin D, Byars, Keaton D, Nair, Devatha P, Bowman, Christopher N, Maute, Kurt K, McLeod, Robert R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29667
container_issue 43
container_start_page 29658
container_title ACS applied materials & interfaces
container_volume 8
creator Glugla, David J
Alim, Marvin D
Byars, Keaton D
Nair, Devatha P
Bowman, Christopher N
Maute, Kurt K
McLeod, Robert R
description We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.
doi_str_mv 10.1021/acsami.6b08981
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835535379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835535379</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-652c2b54c8a205779dbb51db2e4b7f6e1513cea40ea4ae66e169df8226e80bfd3</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEYmNw5YhyREgdSdr044gGA6RJm9g4cajSxi2Z2qYkLWj_nkwdu3GwbNmPX9kvQteUTClh9F7kVtRqGmYkTmJ6gsY0CQIvZpydHusgGKELa7eEhD4j_ByNWBQTFhI-Rh9vqlQSL40qnQ7-VgIv207losIro0sj6lo1JRaNxI9QgDEg8RqqwpvrSu4nusACb360t-5ECXj1qTvd6mpXg7lEZ4WoLFwd8gS9z582sxdvsXx-nT0sPOH7pPNCznKW8SCPhbsuihKZZZzKjEGQRUUIlFM_BxEQFwJC1wgTWcSMhRCTrJD-BN0Ouq3RXz3YLq2VzaGqRAO6tymNfc597keJQ6cDmhttrYEibY2qhdmllKR7Q9PB0PRgqFu4OWj3WQ3yiP856IC7AXCL6Vb3pnGv_qf2Cz8cgG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835535379</pqid></control><display><type>article</type><title>Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer</title><source>ACS Publications</source><creator>Glugla, David J ; Alim, Marvin D ; Byars, Keaton D ; Nair, Devatha P ; Bowman, Christopher N ; Maute, Kurt K ; McLeod, Robert R</creator><creatorcontrib>Glugla, David J ; Alim, Marvin D ; Byars, Keaton D ; Nair, Devatha P ; Bowman, Christopher N ; Maute, Kurt K ; McLeod, Robert R</creatorcontrib><description>We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b08981</identifier><identifier>PMID: 27802605</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-11, Vol.8 (43), p.29658-29667</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-652c2b54c8a205779dbb51db2e4b7f6e1513cea40ea4ae66e169df8226e80bfd3</citedby><cites>FETCH-LOGICAL-a330t-652c2b54c8a205779dbb51db2e4b7f6e1513cea40ea4ae66e169df8226e80bfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b08981$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b08981$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27802605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Glugla, David J</creatorcontrib><creatorcontrib>Alim, Marvin D</creatorcontrib><creatorcontrib>Byars, Keaton D</creatorcontrib><creatorcontrib>Nair, Devatha P</creatorcontrib><creatorcontrib>Bowman, Christopher N</creatorcontrib><creatorcontrib>Maute, Kurt K</creatorcontrib><creatorcontrib>McLeod, Robert R</creatorcontrib><title>Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEYmNw5YhyREgdSdr044gGA6RJm9g4cajSxi2Z2qYkLWj_nkwdu3GwbNmPX9kvQteUTClh9F7kVtRqGmYkTmJ6gsY0CQIvZpydHusgGKELa7eEhD4j_ByNWBQTFhI-Rh9vqlQSL40qnQ7-VgIv207losIro0sj6lo1JRaNxI9QgDEg8RqqwpvrSu4nusACb360t-5ECXj1qTvd6mpXg7lEZ4WoLFwd8gS9z582sxdvsXx-nT0sPOH7pPNCznKW8SCPhbsuihKZZZzKjEGQRUUIlFM_BxEQFwJC1wgTWcSMhRCTrJD-BN0Ouq3RXz3YLq2VzaGqRAO6tymNfc597keJQ6cDmhttrYEibY2qhdmllKR7Q9PB0PRgqFu4OWj3WQ3yiP856IC7AXCL6Vb3pnGv_qf2Cz8cgG8</recordid><startdate>20161102</startdate><enddate>20161102</enddate><creator>Glugla, David J</creator><creator>Alim, Marvin D</creator><creator>Byars, Keaton D</creator><creator>Nair, Devatha P</creator><creator>Bowman, Christopher N</creator><creator>Maute, Kurt K</creator><creator>McLeod, Robert R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161102</creationdate><title>Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer</title><author>Glugla, David J ; Alim, Marvin D ; Byars, Keaton D ; Nair, Devatha P ; Bowman, Christopher N ; Maute, Kurt K ; McLeod, Robert R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-652c2b54c8a205779dbb51db2e4b7f6e1513cea40ea4ae66e169df8226e80bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glugla, David J</creatorcontrib><creatorcontrib>Alim, Marvin D</creatorcontrib><creatorcontrib>Byars, Keaton D</creatorcontrib><creatorcontrib>Nair, Devatha P</creatorcontrib><creatorcontrib>Bowman, Christopher N</creatorcontrib><creatorcontrib>Maute, Kurt K</creatorcontrib><creatorcontrib>McLeod, Robert R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glugla, David J</au><au>Alim, Marvin D</au><au>Byars, Keaton D</au><au>Nair, Devatha P</au><au>Bowman, Christopher N</au><au>Maute, Kurt K</au><au>McLeod, Robert R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-11-02</date><risdate>2016</risdate><volume>8</volume><issue>43</issue><spage>29658</spage><epage>29667</epage><pages>29658-29667</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We demonstrate the formation of shape-programmed, glassy origami structures using a single-layer photopolymer with two mechanically distinct phases. The latent origami pattern consisting of rigid, high cross-link density panels and flexible, low cross-link density creases is fabricated using a series of photomask exposures. Strong optical absorption of the polymer formulation creates depth-wise gradients in the cross-link density of the creases, enforcing directed folding which enables programming of both mountain and valley folds within the same sheet. These multiple photomask patterns can be sequentially applied because the sheet remains flat until immersed into a photopolymerizable monomer solution that differentially swells the polymer to fold and form the origami structure. After folding, a uniform photoexposure polymerizes the absorbed solution, permanently fixing the shape of the folded structure while simultaneously increasing the modulus of the folds. This approach creates sharp folds by mimicking the stiff panels and flexible creases of paper origami while overcoming the traditional trade-off of self-actuated materials that require low modulus for folding and high modulus for mechanical robustness. Using this process, we demonstrate a waterbomb base capable of supporting 1500 times its own weight.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27802605</pmid><doi>10.1021/acsami.6b08981</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-11, Vol.8 (43), p.29658-29667
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1835535379
source ACS Publications
title Rigid Origami via Optical Programming and Deferred Self-Folding of a Two-Stage Photopolymer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A58%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigid%20Origami%20via%20Optical%20Programming%20and%20Deferred%20Self-Folding%20of%20a%20Two-Stage%20Photopolymer&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Glugla,%20David%20J&rft.date=2016-11-02&rft.volume=8&rft.issue=43&rft.spage=29658&rft.epage=29667&rft.pages=29658-29667&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b08981&rft_dat=%3Cproquest_cross%3E1835535379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835535379&rft_id=info:pmid/27802605&rfr_iscdi=true