Syntheses and Structures of Xenon Trioxide Alkylnitrile Adducts

The potent oxidizer and highly shock‐sensitive binary noble‐gas oxide XeO3 interacts with CH3CN and CH3CH2CN to form O3XeNCCH3, O3Xe(NCCH3)2, O3XeNCCH2CH3, and O3Xe(NCCH2CH3)2. Their low‐temperature single‐crystal X‐ray structures show that the xenon atoms are consistently coordinated to three donor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2016-10, Vol.55 (44), p.13780-13783
Hauptverfasser: Goettel, James T., Matsumoto, Kazuhiko, Mercier, Hélène P. A., Schrobilgen, Gary J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13783
container_issue 44
container_start_page 13780
container_title Angewandte Chemie International Edition
container_volume 55
creator Goettel, James T.
Matsumoto, Kazuhiko
Mercier, Hélène P. A.
Schrobilgen, Gary J.
description The potent oxidizer and highly shock‐sensitive binary noble‐gas oxide XeO3 interacts with CH3CN and CH3CH2CN to form O3XeNCCH3, O3Xe(NCCH3)2, O3XeNCCH2CH3, and O3Xe(NCCH2CH3)2. Their low‐temperature single‐crystal X‐ray structures show that the xenon atoms are consistently coordinated to three donor atoms, which results in pseudo‐octahedral environments around the xenon atoms. The adduct series provides the first examples of a neutral xenon oxide bound to nitrogen bases. Raman frequency shifts and Xe−N bond lengths are consistent with complex formation. Energy‐minimized gas‐phase geometries and vibrational frequencies were obtained for the model compounds O3Xe(NCCH3)n (n=1–3) and O3Xe(NCCH3)n⋅[O3Xe(NCCH3)2]2 (n=1, 2). Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses were carried out to further probe the nature of the bonding in these adducts. Xenon trioxide forms stable 1:1 and 1:2 adducts with CH3CN and CH3CH2CN, which were characterized by Raman spectroscopy and X‐ray crystallography. Computational studies show that the Xe‐ ‐ ‐N interactions are essentially electrostatic. The amphoteric Lewis acid/base nature of XeO3 influences the geometries of these adducts in the solid state where the structural units interact through Xe=O‐ ‐ ‐Xe bridges.
doi_str_mv 10.1002/anie.201607583
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835518804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835518804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4763-13d3d3ba5071fa1752177e7d44c69b686c9d4a3fe5606cdf0128b6173b815ff93</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMofqxePUrBi5eumaT56ElW0VXRVXBF8RLSJsVqt12TFt3_3iyri3hQcpgM_N5jZh5Cu4D7gDE51HVp-wQDx4JJuoI2gRGIqRB0NfwTSmMhGWygLe9fAi8l5utogwguU5qQTXR0N6vbZ-utj3RtorvWdXnbudA2RfRo66aOxq5sPkpjo0H1OqvqsnVlFRpjAum30VqhK293vmoP3Z-djk_O46ub4cXJ4CrOE8FpDNSEl2mGBRQaRBhSCCtMkuQ8zbjkeWoSTQvLOOa5KTAQmXEQNJPAiiKlPXSw8J265q2zvlWT0ue2qnRtm84rkJQxCOslAd3_hb40navDdApSLIhMWEr-pCTFHAhgGqj-gspd472zhZq6cqLdTAFW8wDUPAC1DCAI9r5su2xizRL_vngA0gXwHq44-8dODUYXpz_N44W29K39WGq1e1VcUMHUw2ioyOXoejw8vlVP9BMAp57B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830612103</pqid></control><display><type>article</type><title>Syntheses and Structures of Xenon Trioxide Alkylnitrile Adducts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Goettel, James T. ; Matsumoto, Kazuhiko ; Mercier, Hélène P. A. ; Schrobilgen, Gary J.</creator><creatorcontrib>Goettel, James T. ; Matsumoto, Kazuhiko ; Mercier, Hélène P. A. ; Schrobilgen, Gary J.</creatorcontrib><description>The potent oxidizer and highly shock‐sensitive binary noble‐gas oxide XeO3 interacts with CH3CN and CH3CH2CN to form O3XeNCCH3, O3Xe(NCCH3)2, O3XeNCCH2CH3, and O3Xe(NCCH2CH3)2. Their low‐temperature single‐crystal X‐ray structures show that the xenon atoms are consistently coordinated to three donor atoms, which results in pseudo‐octahedral environments around the xenon atoms. The adduct series provides the first examples of a neutral xenon oxide bound to nitrogen bases. Raman frequency shifts and Xe−N bond lengths are consistent with complex formation. Energy‐minimized gas‐phase geometries and vibrational frequencies were obtained for the model compounds O3Xe(NCCH3)n (n=1–3) and O3Xe(NCCH3)n⋅[O3Xe(NCCH3)2]2 (n=1, 2). Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses were carried out to further probe the nature of the bonding in these adducts. Xenon trioxide forms stable 1:1 and 1:2 adducts with CH3CN and CH3CH2CN, which were characterized by Raman spectroscopy and X‐ray crystallography. Computational studies show that the Xe‐ ‐ ‐N interactions are essentially electrostatic. The amphoteric Lewis acid/base nature of XeO3 influences the geometries of these adducts in the solid state where the structural units interact through Xe=O‐ ‐ ‐Xe bridges.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201607583</identifier><identifier>PMID: 27689342</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Adducts ; Atomic structure ; Chemical bonds ; Complex formation ; Crystal structure ; Electrostatic properties ; Energy of formation ; fluorine chemistry ; Localization ; Low temperature ; Nitrogen ; noble-gas chemistry ; Quantum theory ; Raman spectroscopy ; Single crystals ; Temperature effects ; X-ray crystallography ; Xenon ; xenon oxides</subject><ispartof>Angewandte Chemie International Edition, 2016-10, Vol.55 (44), p.13780-13783</ispartof><rights>2016 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4763-13d3d3ba5071fa1752177e7d44c69b686c9d4a3fe5606cdf0128b6173b815ff93</citedby><cites>FETCH-LOGICAL-c4763-13d3d3ba5071fa1752177e7d44c69b686c9d4a3fe5606cdf0128b6173b815ff93</cites><orcidid>0000-0001-5109-6979 ; 0000-0001-8120-3771 ; 0000-0002-7391-5469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201607583$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201607583$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27689342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goettel, James T.</creatorcontrib><creatorcontrib>Matsumoto, Kazuhiko</creatorcontrib><creatorcontrib>Mercier, Hélène P. A.</creatorcontrib><creatorcontrib>Schrobilgen, Gary J.</creatorcontrib><title>Syntheses and Structures of Xenon Trioxide Alkylnitrile Adducts</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>The potent oxidizer and highly shock‐sensitive binary noble‐gas oxide XeO3 interacts with CH3CN and CH3CH2CN to form O3XeNCCH3, O3Xe(NCCH3)2, O3XeNCCH2CH3, and O3Xe(NCCH2CH3)2. Their low‐temperature single‐crystal X‐ray structures show that the xenon atoms are consistently coordinated to three donor atoms, which results in pseudo‐octahedral environments around the xenon atoms. The adduct series provides the first examples of a neutral xenon oxide bound to nitrogen bases. Raman frequency shifts and Xe−N bond lengths are consistent with complex formation. Energy‐minimized gas‐phase geometries and vibrational frequencies were obtained for the model compounds O3Xe(NCCH3)n (n=1–3) and O3Xe(NCCH3)n⋅[O3Xe(NCCH3)2]2 (n=1, 2). Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses were carried out to further probe the nature of the bonding in these adducts. Xenon trioxide forms stable 1:1 and 1:2 adducts with CH3CN and CH3CH2CN, which were characterized by Raman spectroscopy and X‐ray crystallography. Computational studies show that the Xe‐ ‐ ‐N interactions are essentially electrostatic. The amphoteric Lewis acid/base nature of XeO3 influences the geometries of these adducts in the solid state where the structural units interact through Xe=O‐ ‐ ‐Xe bridges.</description><subject>Adducts</subject><subject>Atomic structure</subject><subject>Chemical bonds</subject><subject>Complex formation</subject><subject>Crystal structure</subject><subject>Electrostatic properties</subject><subject>Energy of formation</subject><subject>fluorine chemistry</subject><subject>Localization</subject><subject>Low temperature</subject><subject>Nitrogen</subject><subject>noble-gas chemistry</subject><subject>Quantum theory</subject><subject>Raman spectroscopy</subject><subject>Single crystals</subject><subject>Temperature effects</subject><subject>X-ray crystallography</subject><subject>Xenon</subject><subject>xenon oxides</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LxDAQxYMofqxePUrBi5eumaT56ElW0VXRVXBF8RLSJsVqt12TFt3_3iyri3hQcpgM_N5jZh5Cu4D7gDE51HVp-wQDx4JJuoI2gRGIqRB0NfwTSmMhGWygLe9fAi8l5utogwguU5qQTXR0N6vbZ-utj3RtorvWdXnbudA2RfRo66aOxq5sPkpjo0H1OqvqsnVlFRpjAum30VqhK293vmoP3Z-djk_O46ub4cXJ4CrOE8FpDNSEl2mGBRQaRBhSCCtMkuQ8zbjkeWoSTQvLOOa5KTAQmXEQNJPAiiKlPXSw8J265q2zvlWT0ue2qnRtm84rkJQxCOslAd3_hb40navDdApSLIhMWEr-pCTFHAhgGqj-gspd472zhZq6cqLdTAFW8wDUPAC1DCAI9r5su2xizRL_vngA0gXwHq44-8dODUYXpz_N44W29K39WGq1e1VcUMHUw2ioyOXoejw8vlVP9BMAp57B</recordid><startdate>20161024</startdate><enddate>20161024</enddate><creator>Goettel, James T.</creator><creator>Matsumoto, Kazuhiko</creator><creator>Mercier, Hélène P. A.</creator><creator>Schrobilgen, Gary J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5109-6979</orcidid><orcidid>https://orcid.org/0000-0001-8120-3771</orcidid><orcidid>https://orcid.org/0000-0002-7391-5469</orcidid></search><sort><creationdate>20161024</creationdate><title>Syntheses and Structures of Xenon Trioxide Alkylnitrile Adducts</title><author>Goettel, James T. ; Matsumoto, Kazuhiko ; Mercier, Hélène P. A. ; Schrobilgen, Gary J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4763-13d3d3ba5071fa1752177e7d44c69b686c9d4a3fe5606cdf0128b6173b815ff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adducts</topic><topic>Atomic structure</topic><topic>Chemical bonds</topic><topic>Complex formation</topic><topic>Crystal structure</topic><topic>Electrostatic properties</topic><topic>Energy of formation</topic><topic>fluorine chemistry</topic><topic>Localization</topic><topic>Low temperature</topic><topic>Nitrogen</topic><topic>noble-gas chemistry</topic><topic>Quantum theory</topic><topic>Raman spectroscopy</topic><topic>Single crystals</topic><topic>Temperature effects</topic><topic>X-ray crystallography</topic><topic>Xenon</topic><topic>xenon oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goettel, James T.</creatorcontrib><creatorcontrib>Matsumoto, Kazuhiko</creatorcontrib><creatorcontrib>Mercier, Hélène P. A.</creatorcontrib><creatorcontrib>Schrobilgen, Gary J.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goettel, James T.</au><au>Matsumoto, Kazuhiko</au><au>Mercier, Hélène P. A.</au><au>Schrobilgen, Gary J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntheses and Structures of Xenon Trioxide Alkylnitrile Adducts</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-10-24</date><risdate>2016</risdate><volume>55</volume><issue>44</issue><spage>13780</spage><epage>13783</epage><pages>13780-13783</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>The potent oxidizer and highly shock‐sensitive binary noble‐gas oxide XeO3 interacts with CH3CN and CH3CH2CN to form O3XeNCCH3, O3Xe(NCCH3)2, O3XeNCCH2CH3, and O3Xe(NCCH2CH3)2. Their low‐temperature single‐crystal X‐ray structures show that the xenon atoms are consistently coordinated to three donor atoms, which results in pseudo‐octahedral environments around the xenon atoms. The adduct series provides the first examples of a neutral xenon oxide bound to nitrogen bases. Raman frequency shifts and Xe−N bond lengths are consistent with complex formation. Energy‐minimized gas‐phase geometries and vibrational frequencies were obtained for the model compounds O3Xe(NCCH3)n (n=1–3) and O3Xe(NCCH3)n⋅[O3Xe(NCCH3)2]2 (n=1, 2). Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses were carried out to further probe the nature of the bonding in these adducts. Xenon trioxide forms stable 1:1 and 1:2 adducts with CH3CN and CH3CH2CN, which were characterized by Raman spectroscopy and X‐ray crystallography. Computational studies show that the Xe‐ ‐ ‐N interactions are essentially electrostatic. The amphoteric Lewis acid/base nature of XeO3 influences the geometries of these adducts in the solid state where the structural units interact through Xe=O‐ ‐ ‐Xe bridges.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27689342</pmid><doi>10.1002/anie.201607583</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-5109-6979</orcidid><orcidid>https://orcid.org/0000-0001-8120-3771</orcidid><orcidid>https://orcid.org/0000-0002-7391-5469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2016-10, Vol.55 (44), p.13780-13783
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1835518804
source Wiley Online Library Journals Frontfile Complete
subjects Adducts
Atomic structure
Chemical bonds
Complex formation
Crystal structure
Electrostatic properties
Energy of formation
fluorine chemistry
Localization
Low temperature
Nitrogen
noble-gas chemistry
Quantum theory
Raman spectroscopy
Single crystals
Temperature effects
X-ray crystallography
Xenon
xenon oxides
title Syntheses and Structures of Xenon Trioxide Alkylnitrile Adducts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntheses%20and%20Structures%20of%20Xenon%20Trioxide%20Alkylnitrile%20Adducts&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Goettel,%20James%20T.&rft.date=2016-10-24&rft.volume=55&rft.issue=44&rft.spage=13780&rft.epage=13783&rft.pages=13780-13783&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201607583&rft_dat=%3Cproquest_cross%3E1835518804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830612103&rft_id=info:pmid/27689342&rfr_iscdi=true