Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems

As regional and global scales become more important to ecologists, methods must be developed for the application of existing fine-scale knowledge to predict coarser-scale ecosystem properties. This generally involves some form of model in which fine-scale components are aggregated. This aggregation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological applications 1992-02, Vol.2 (1), p.55-70
Hauptverfasser: Rastetter, Edward B., King, Anthony W., Cosby, Bernard J., Hornberger, George M., O'Neill, Robert V., Hobbie, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 55
container_title Ecological applications
container_volume 2
creator Rastetter, Edward B.
King, Anthony W.
Cosby, Bernard J.
Hornberger, George M.
O'Neill, Robert V.
Hobbie, John E.
description As regional and global scales become more important to ecologists, methods must be developed for the application of existing fine-scale knowledge to predict coarser-scale ecosystem properties. This generally involves some form of model in which fine-scale components are aggregated. This aggregation is necessary to avoid the cumulative error associated with the estimation of a large number of parameters. However, aggregation can itself produce errors that arise because of the variation among the aggregated components. The statistical expectation operator can be used as a rigorous method for translating fine-scale relationships to coarser scales without aggregation errors. Unfortunately this method is too cumbersome to be applied in most cases, and alternative methods must be used. These alternative methods are typically partial corrections for the variation in only a few of the fine-scale attributes. Therefore, for these methods to be effective, the attributes that are the most severe sources of error must be identified a priori. We present a procedure for making these identifications based on a Monte Carlo sampling of the fine-scale attributes. We then present four methods of translating fine-scale knowledge so it can be applied at coarser scales: (1) partial transformations using the expectation operator, (2) moment expansions, (3) partitioning, and (4) calibration. These methods should make it possible to apply the vast store of fine-scale ecological knowledge to model coarser-scale attributes of ecosystems.
doi_str_mv 10.2307/1941889
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835489104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1941889</jstor_id><sourcerecordid>1941889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3805-56c644e95a7951a3782a4787c8e53b06c1872b335c8b43c3c3df83d1a56b91663</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMofuN_IHsQ9bKaSTZfx1JaFRUF9eRhyWany8q20WRL6X9vSqs3nTnMO_zeG3iEnAC9YpyqazAFaG22yD4YbnIhNNtOmgrIqZKwRw5i_KBpGGO7ZI8pJQwYtk_eB00TsLF9O2uycTvD_MXZDrOR851v2qSz-5lfdFg3mPU-e_Q1dtnQ2xAxbNhB34e2mvcYMz9ZOeMy9jiNR2RnYruIx5t7SN7Go9fhbf7wdHM3HDzkjmsqciGdLAo0wiojwHKlmS2UVk6j4BWVDrRiFefC6argLm090bwGK2RlQEp-SC7XuZ_Bf80x9uW0jQ67zs7Qz2MJmotCG6BFQs__RyUILhlN4MUadMHHGHBSfoZ2asOyBFquKi83lSfydBM5r6ZY_3I_HSeAroFF2-Hyr5xyNHgGYxgDIZLlbG35iL0Pf77-Bshqkpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16153620</pqid></control><display><type>article</type><title>Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems</title><source>Jstor Complete Legacy</source><creator>Rastetter, Edward B. ; King, Anthony W. ; Cosby, Bernard J. ; Hornberger, George M. ; O'Neill, Robert V. ; Hobbie, John E.</creator><creatorcontrib>Rastetter, Edward B. ; King, Anthony W. ; Cosby, Bernard J. ; Hornberger, George M. ; O'Neill, Robert V. ; Hobbie, John E.</creatorcontrib><description>As regional and global scales become more important to ecologists, methods must be developed for the application of existing fine-scale knowledge to predict coarser-scale ecosystem properties. This generally involves some form of model in which fine-scale components are aggregated. This aggregation is necessary to avoid the cumulative error associated with the estimation of a large number of parameters. However, aggregation can itself produce errors that arise because of the variation among the aggregated components. The statistical expectation operator can be used as a rigorous method for translating fine-scale relationships to coarser scales without aggregation errors. Unfortunately this method is too cumbersome to be applied in most cases, and alternative methods must be used. These alternative methods are typically partial corrections for the variation in only a few of the fine-scale attributes. Therefore, for these methods to be effective, the attributes that are the most severe sources of error must be identified a priori. We present a procedure for making these identifications based on a Monte Carlo sampling of the fine-scale attributes. We then present four methods of translating fine-scale knowledge so it can be applied at coarser scales: (1) partial transformations using the expectation operator, (2) moment expansions, (3) partitioning, and (4) calibration. These methods should make it possible to apply the vast store of fine-scale ecological knowledge to model coarser-scale attributes of ecosystems.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.2307/1941889</identifier><identifier>PMID: 27759192</identifier><language>eng</language><publisher>United States: The Ecological Society of America</publisher><subject>Aggregation ; Calibration ; Ecological modeling ; Ecosystem models ; Error rates ; Irradiance ; Leaf area index ; Mathematical moments ; Photosynthesis ; Vegetation canopies</subject><ispartof>Ecological applications, 1992-02, Vol.2 (1), p.55-70</ispartof><rights>Copyright 1992 The Ecological Society of America</rights><rights>1992 by the Ecological Society of America</rights><rights>1992 by the Ecological Society of America.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3805-56c644e95a7951a3782a4787c8e53b06c1872b335c8b43c3c3df83d1a56b91663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1941889$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1941889$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27759192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rastetter, Edward B.</creatorcontrib><creatorcontrib>King, Anthony W.</creatorcontrib><creatorcontrib>Cosby, Bernard J.</creatorcontrib><creatorcontrib>Hornberger, George M.</creatorcontrib><creatorcontrib>O'Neill, Robert V.</creatorcontrib><creatorcontrib>Hobbie, John E.</creatorcontrib><title>Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems</title><title>Ecological applications</title><addtitle>Ecol Appl</addtitle><description>As regional and global scales become more important to ecologists, methods must be developed for the application of existing fine-scale knowledge to predict coarser-scale ecosystem properties. This generally involves some form of model in which fine-scale components are aggregated. This aggregation is necessary to avoid the cumulative error associated with the estimation of a large number of parameters. However, aggregation can itself produce errors that arise because of the variation among the aggregated components. The statistical expectation operator can be used as a rigorous method for translating fine-scale relationships to coarser scales without aggregation errors. Unfortunately this method is too cumbersome to be applied in most cases, and alternative methods must be used. These alternative methods are typically partial corrections for the variation in only a few of the fine-scale attributes. Therefore, for these methods to be effective, the attributes that are the most severe sources of error must be identified a priori. We present a procedure for making these identifications based on a Monte Carlo sampling of the fine-scale attributes. We then present four methods of translating fine-scale knowledge so it can be applied at coarser scales: (1) partial transformations using the expectation operator, (2) moment expansions, (3) partitioning, and (4) calibration. These methods should make it possible to apply the vast store of fine-scale ecological knowledge to model coarser-scale attributes of ecosystems.</description><subject>Aggregation</subject><subject>Calibration</subject><subject>Ecological modeling</subject><subject>Ecosystem models</subject><subject>Error rates</subject><subject>Irradiance</subject><subject>Leaf area index</subject><subject>Mathematical moments</subject><subject>Photosynthesis</subject><subject>Vegetation canopies</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMofuN_IHsQ9bKaSTZfx1JaFRUF9eRhyWany8q20WRL6X9vSqs3nTnMO_zeG3iEnAC9YpyqazAFaG22yD4YbnIhNNtOmgrIqZKwRw5i_KBpGGO7ZI8pJQwYtk_eB00TsLF9O2uycTvD_MXZDrOR851v2qSz-5lfdFg3mPU-e_Q1dtnQ2xAxbNhB34e2mvcYMz9ZOeMy9jiNR2RnYruIx5t7SN7Go9fhbf7wdHM3HDzkjmsqciGdLAo0wiojwHKlmS2UVk6j4BWVDrRiFefC6argLm090bwGK2RlQEp-SC7XuZ_Bf80x9uW0jQ67zs7Qz2MJmotCG6BFQs__RyUILhlN4MUadMHHGHBSfoZ2asOyBFquKi83lSfydBM5r6ZY_3I_HSeAroFF2-Hyr5xyNHgGYxgDIZLlbG35iL0Pf77-Bshqkpk</recordid><startdate>199202</startdate><enddate>199202</enddate><creator>Rastetter, Edward B.</creator><creator>King, Anthony W.</creator><creator>Cosby, Bernard J.</creator><creator>Hornberger, George M.</creator><creator>O'Neill, Robert V.</creator><creator>Hobbie, John E.</creator><general>The Ecological Society of America</general><general>Ecological Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>199202</creationdate><title>Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems</title><author>Rastetter, Edward B. ; King, Anthony W. ; Cosby, Bernard J. ; Hornberger, George M. ; O'Neill, Robert V. ; Hobbie, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3805-56c644e95a7951a3782a4787c8e53b06c1872b335c8b43c3c3df83d1a56b91663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Aggregation</topic><topic>Calibration</topic><topic>Ecological modeling</topic><topic>Ecosystem models</topic><topic>Error rates</topic><topic>Irradiance</topic><topic>Leaf area index</topic><topic>Mathematical moments</topic><topic>Photosynthesis</topic><topic>Vegetation canopies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rastetter, Edward B.</creatorcontrib><creatorcontrib>King, Anthony W.</creatorcontrib><creatorcontrib>Cosby, Bernard J.</creatorcontrib><creatorcontrib>Hornberger, George M.</creatorcontrib><creatorcontrib>O'Neill, Robert V.</creatorcontrib><creatorcontrib>Hobbie, John E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rastetter, Edward B.</au><au>King, Anthony W.</au><au>Cosby, Bernard J.</au><au>Hornberger, George M.</au><au>O'Neill, Robert V.</au><au>Hobbie, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems</atitle><jtitle>Ecological applications</jtitle><addtitle>Ecol Appl</addtitle><date>1992-02</date><risdate>1992</risdate><volume>2</volume><issue>1</issue><spage>55</spage><epage>70</epage><pages>55-70</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><abstract>As regional and global scales become more important to ecologists, methods must be developed for the application of existing fine-scale knowledge to predict coarser-scale ecosystem properties. This generally involves some form of model in which fine-scale components are aggregated. This aggregation is necessary to avoid the cumulative error associated with the estimation of a large number of parameters. However, aggregation can itself produce errors that arise because of the variation among the aggregated components. The statistical expectation operator can be used as a rigorous method for translating fine-scale relationships to coarser scales without aggregation errors. Unfortunately this method is too cumbersome to be applied in most cases, and alternative methods must be used. These alternative methods are typically partial corrections for the variation in only a few of the fine-scale attributes. Therefore, for these methods to be effective, the attributes that are the most severe sources of error must be identified a priori. We present a procedure for making these identifications based on a Monte Carlo sampling of the fine-scale attributes. We then present four methods of translating fine-scale knowledge so it can be applied at coarser scales: (1) partial transformations using the expectation operator, (2) moment expansions, (3) partitioning, and (4) calibration. These methods should make it possible to apply the vast store of fine-scale ecological knowledge to model coarser-scale attributes of ecosystems.</abstract><cop>United States</cop><pub>The Ecological Society of America</pub><pmid>27759192</pmid><doi>10.2307/1941889</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-0761
ispartof Ecological applications, 1992-02, Vol.2 (1), p.55-70
issn 1051-0761
1939-5582
language eng
recordid cdi_proquest_miscellaneous_1835489104
source Jstor Complete Legacy
subjects Aggregation
Calibration
Ecological modeling
Ecosystem models
Error rates
Irradiance
Leaf area index
Mathematical moments
Photosynthesis
Vegetation canopies
title Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregating%20Fine-Scale%20Ecological%20Knowledge%20to%20Model%20Coarser-Scale%20Attributes%20of%20Ecosystems&rft.jtitle=Ecological%20applications&rft.au=Rastetter,%20Edward%20B.&rft.date=1992-02&rft.volume=2&rft.issue=1&rft.spage=55&rft.epage=70&rft.pages=55-70&rft.issn=1051-0761&rft.eissn=1939-5582&rft_id=info:doi/10.2307/1941889&rft_dat=%3Cjstor_proqu%3E1941889%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16153620&rft_id=info:pmid/27759192&rft_jstor_id=1941889&rfr_iscdi=true